| 注册
首页|期刊导航|计算机工程|融合用户属性的隐语义模型推荐算法

融合用户属性的隐语义模型推荐算法

巫可 战荫伟 李鹰

计算机工程2016,Vol.42Issue(12):171-175,5.
计算机工程2016,Vol.42Issue(12):171-175,5.DOI:10.3969/j.issn.1000-3428.2016.12.030

融合用户属性的隐语义模型推荐算法

Recommendation Algorithm of Latent Factor Model Fused with User Attribute

巫可 1战荫伟 1李鹰2

作者信息

  • 1. 广东工业大学 计算机学院,广州 510006
  • 2. 广东省数字广东研究院,广州 510000
  • 折叠

摘要

Abstract

To solve the problems of data sparsity and cold start on latent factor model recommendation algorithm,a recommendation algorithm fused with user attribute information is presented.After adding binary user attributes to the latent factor model,it finds similar users according to the attributes of the target user and importance degrees of other user attributes measured by classification model.Combining with the target user's rating information,the recommendation result is obtained.The proposed method is tested by the Movielens data set,and the result shows that it outperforms collaborative filtering algorithm and latent factor model algorithm on accuracy of recommendation results even when data is extremely sparse.

关键词

推荐系统/隐语义模型/用户属性/稀疏数据/逻辑回归

Key words

recommendation system/latent factor model/user attribute/sparse data/logistic regression

分类

信息技术与安全科学

引用本文复制引用

巫可,战荫伟,李鹰..融合用户属性的隐语义模型推荐算法[J].计算机工程,2016,42(12):171-175,5.

基金项目

广东省科技厅研发与产业化项目(2013B090500038,2014B040401012). (2013B090500038,2014B040401012)

计算机工程

OA北大核心CSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文