计算机应用与软件2016,Vol.33Issue(12):127-130,139,5.DOI:10.3969/j.issn.1000-386x.2016.12.031
鱼体背部轮廓BPR算法的淡水鱼种类识别方法研究
RESEARCH ON IDENTIFICATION METHOD OF FRESHWATER FISH SPECIES USING BPR ALGORITHM BASED ON FISH BACK CONTOUR
摘要
Abstract
In view of the online automatic identification of freshwater fish species,we use machine vision technology and put forward a non-destructive fish body identification method using BPR (bending potential ratio),which is based on the fish back contour.Firstly, through analyzing the collected sample sets of crucian,grass carp,bream and cyprinoid these four common fish species,we adopt least-square algorithm to establish the corresponding mathematical model of fish back contour,and give the statistical analysis of BPR value distribution interval.Then we use camera to obtain the corresponding colour image of fish body,which needs online automatic identification,and we can get the fish back contour through obtained colour image after pretreatment.Finally,we calculate the BPR values of fish body and use the established BPR value distribution model to identify fish species.Experimental results indicate that the method is simple and has high identification accuracy rate,which is above 95% on the collected database.关键词
机器视觉/鱼体背部轮廓/最小二乘算法/弯曲潜能比率Key words
Machine vision/Fish back contour/Least-square algorithm/Bending potential ratio分类
信息技术与安全科学引用本文复制引用
涂兵,谭志豪,贺燕,王锦萍,陶健..鱼体背部轮廓BPR算法的淡水鱼种类识别方法研究[J].计算机应用与软件,2016,33(12):127-130,139,5.基金项目
国家自然科学基金项目(61201435);湖南省高校科技创新团队支持计划项目(湘教通[2012]318号)。 ()