| 注册
首页|期刊导航|计算机应用与软件|鱼体背部轮廓BPR算法的淡水鱼种类识别方法研究

鱼体背部轮廓BPR算法的淡水鱼种类识别方法研究

涂兵 谭志豪 贺燕 王锦萍 陶健

计算机应用与软件2016,Vol.33Issue(12):127-130,139,5.
计算机应用与软件2016,Vol.33Issue(12):127-130,139,5.DOI:10.3969/j.issn.1000-386x.2016.12.031

鱼体背部轮廓BPR算法的淡水鱼种类识别方法研究

RESEARCH ON IDENTIFICATION METHOD OF FRESHWATER FISH SPECIES USING BPR ALGORITHM BASED ON FISH BACK CONTOUR

涂兵 1谭志豪 2贺燕 3王锦萍 1陶健3

作者信息

  • 1. 湖南理工学院信息与通信工程学院 湖南 岳阳 414006
  • 2. 湖南理工学院复杂系统优化与控制湖南省普通高等学校重点实验室 湖南 岳阳 414006
  • 3. 湖南理工学院 IIP 创新实验室 湖南 岳阳 414006
  • 折叠

摘要

Abstract

In view of the online automatic identification of freshwater fish species,we use machine vision technology and put forward a non-destructive fish body identification method using BPR (bending potential ratio),which is based on the fish back contour.Firstly, through analyzing the collected sample sets of crucian,grass carp,bream and cyprinoid these four common fish species,we adopt least-square algorithm to establish the corresponding mathematical model of fish back contour,and give the statistical analysis of BPR value distribution interval.Then we use camera to obtain the corresponding colour image of fish body,which needs online automatic identification,and we can get the fish back contour through obtained colour image after pretreatment.Finally,we calculate the BPR values of fish body and use the established BPR value distribution model to identify fish species.Experimental results indicate that the method is simple and has high identification accuracy rate,which is above 95% on the collected database.

关键词

机器视觉/鱼体背部轮廓/最小二乘算法/弯曲潜能比率

Key words

Machine vision/Fish back contour/Least-square algorithm/Bending potential ratio

分类

信息技术与安全科学

引用本文复制引用

涂兵,谭志豪,贺燕,王锦萍,陶健..鱼体背部轮廓BPR算法的淡水鱼种类识别方法研究[J].计算机应用与软件,2016,33(12):127-130,139,5.

基金项目

国家自然科学基金项目(61201435);湖南省高校科技创新团队支持计划项目(湘教通[2012]318号)。 ()

计算机应用与软件

OACSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文