| 注册
首页|期刊导航|计算机技术与发展|自适应蚁群算法求解最短路径和TSP问题

自适应蚁群算法求解最短路径和TSP问题

易正俊 李勇霞 易校石

计算机技术与发展2016,Vol.26Issue(12):1-5,5.
计算机技术与发展2016,Vol.26Issue(12):1-5,5.DOI:10.3969/j.issn.1673-629X.2016.12.001

自适应蚁群算法求解最短路径和TSP问题

Solving of Shortest Path Problem and TSP with Adaptive Ant Colony Algorithm

易正俊 1李勇霞 1易校石2

作者信息

  • 1. 重庆大学 数学与统计学院,重庆 401331
  • 2. 重庆师范大学 数学科学学院,重庆 401131
  • 折叠

摘要

Abstract

Direction guiding is utilized in the initial pheromone avoiding ant colony in the initial stage to blindly random search and to waste more time. Moreover,a dynamic factor ( hyperbolic tangent function) is invited in the global renewal process to update adaptively the pheromone concentration on the optimal path,in which way the possibility of obtaining the global optimal solution is increased. Then two examples are optimized with the improved algorithm,and the optimization results are in step with the actual,illustrating the effective-ness and practicability of the improved algorithm.

关键词

蚁群算法/最短路径/方向引导/动态因子/旅行商问题

Key words

ant colony algorithm/shortest path/direction guiding/dynamic factor/TSP

分类

信息技术与安全科学

引用本文复制引用

易正俊,李勇霞,易校石..自适应蚁群算法求解最短路径和TSP问题[J].计算机技术与发展,2016,26(12):1-5,5.

基金项目

国家自然科学基金资助项目(69674012) (69674012)

重庆市科技攻关计划(CSTC2009AC3037) (CSTC2009AC3037)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文