| 注册
首页|期刊导航|计算机工程与应用|自适应加权LGCP与快速稀疏表示的面部表情识别

自适应加权LGCP与快速稀疏表示的面部表情识别

吉训生 王荣飞

计算机工程与应用2017,Vol.53Issue(1):158-162,5.
计算机工程与应用2017,Vol.53Issue(1):158-162,5.DOI:10.3778/j.issn.1002-8331.1504-0117

自适应加权LGCP与快速稀疏表示的面部表情识别

Facial expression recognition with adaptive weighted LGCP and fast sparse repre-sentation

吉训生 1王荣飞1

作者信息

  • 1. 江南大学 物联网工程学院,江苏 无锡 214122
  • 折叠

摘要

Abstract

The traditional LBP feature extraction of the image is sensitive to the change of the non-monotonic light. The global feature can’t be sparsely expressed by the LBP. An adaptive weighted Local Gray Code Patterns(LGCP) and fast sparse representation of feature extraction methods is proposed. The edge detection operator is used to maximize the edge values of the original image to overcome the influence of feature description from the light changes. Eight bit gray code is got by using LGCP and is converted into decimal. The optimal representation of local features will be got by the weighted cascade block. Distribution characteristics descriptor of the cascade histogram is as the atoms to form the dictionary. The global feature of the image would have better sparse representation. Finally, a fast sparse representation is selected as a classifier for classification. Several experiments on the extended Cohn-Kanade(CK+) expression data set show that the method has a rapid recognition, and the recognition rate is up to 94%.

关键词

表情识别/格雷码模式/稀疏表示

Key words

expression recognition/Gray Code Pattern(GCP)/sparse representation

分类

信息技术与安全科学

引用本文复制引用

吉训生,王荣飞..自适应加权LGCP与快速稀疏表示的面部表情识别[J].计算机工程与应用,2017,53(1):158-162,5.

基金项目

国家自然科学基金(No.61170120)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文