| 注册
首页|期刊导航|南京理工大学学报(自然科学版)|基于稀疏表示和低秩逼近的自适应异常事件检测算法

基于稀疏表示和低秩逼近的自适应异常事件检测算法

周晓雨 余博思 丁恩杰

南京理工大学学报(自然科学版)2016,Vol.40Issue(6):666-673,8.
南京理工大学学报(自然科学版)2016,Vol.40Issue(6):666-673,8.DOI:10.14177/j.cnki.32-1397n.2016.40.06.005

基于稀疏表示和低秩逼近的自适应异常事件检测算法

Adaptive abnormal event detection algorithm based on sparse representation and low rank approximation

周晓雨 1余博思 2丁恩杰3

作者信息

  • 1. 中国矿业大学 物联网 感知矿山 研究中心,江苏 徐州221008
  • 2. 江苏省财经职业技术学院 机械电子与信息工程学院,江苏 淮安223003
  • 3. 南京理工大学 计算机科学与工程学院,江苏 南京210094
  • 折叠

摘要

Abstract

A dictionary learning algorithm based on a low rank sparse coding model is proposed aiming at the problem that traditional abnormal event detection algorithm doesn’t consider the low rank characteristic of video sequences. Multi scale gradient characteristics of three-dimensional space-time are extracted and clustered using K-means clustering. Dictionary learning of every feature <br> clustering is carried out using the low rank sparse coding model. Every normal behavior pattern is obtained using iteration clustering and dictionary learning. The performance of this algorithm is tested using two public data sets UCSD Ped1 and Avenue. Compared with social force(SF),mixture of probabilistic principal component analyzers ( MPPCA ) , SF-MPPCA, mixture of dynamic texture ( MDT) , Adam, subspace and sparse combination learning framework ( SCLF ) , the result of this algorithm is more correct and real-time.

关键词

稀疏表示/低秩逼近/异常事件检测/低秩稀疏编码模型/字典学习/K-均值聚类

Key words

sparse representation/low rank approximation/abnormal event detection/low rank sparse coding model/dictionary learning/K-means clustering

分类

信息技术与安全科学

引用本文复制引用

周晓雨,余博思,丁恩杰..基于稀疏表示和低秩逼近的自适应异常事件检测算法[J].南京理工大学学报(自然科学版),2016,40(6):666-673,8.

基金项目

淮安市科技支撑计划(HAS2014023) (HAS2014023)

南京理工大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1005-9830

访问量1
|
下载量0
段落导航相关论文