| 注册
首页|期刊导航|上海农业学报|基于遗传粒子群算法的番茄幼苗光合优化调控模型

基于遗传粒子群算法的番茄幼苗光合优化调控模型

王东 王智永 裴雪 辛萍萍 张佐经

上海农业学报2016,Vol.32Issue(6):26-32,7.
上海农业学报2016,Vol.32Issue(6):26-32,7.DOI:10.15955/j.issn1000-3924.2016.06.05

基于遗传粒子群算法的番茄幼苗光合优化调控模型

A regulatory model of tomato seedlings’photosynthesis based on genetic algorithm-particle swarm optimization

王东 1王智永 1裴雪 1辛萍萍 1张佐经1

作者信息

  • 1. 西北农林科技大学机械与电子工程学院,杨凌712100
  • 折叠

摘要

Abstract

Tomato plants’photosynthetic rate is mainly influenced by temperature and photon flux density, and acquisition of dynamic information of light saturation points at different temperatures is the crux of improving the regulating efficiency of light environment.According to genetic algorithm-particle swarm optimization (GA-PSO)the paper proposes a regulatory model of photosynthetic optimization:multidimensional data are acquired by means of the two-factor nested tests of photosynthetic rate,a multivariate nonlinear regression model of photosynthetic rate coupling temperature and photon flux density is built and then optimized by using GA-PSO, thus acquiring the light saturation point at any discrete temperature,and lastly with the saturated light intensity as a desired value,a regulatory model of photosynthetic optimization is established.The model is verified by taking tomato seedlings,and the results show that the light saturation points at different temperatures can dynamically be acquired by the proposed method,the determination coefficient between the light saturation points’measured and calculated values is 0.9873,and the maximum relative error is less than 4.6%,indicating that the proposed method has a high precision and an important significance of improving the regulating efficiency of light environment.

关键词

番茄/幼苗/光合速率/光饱和点/遗传算法/粒子群算法/调控模型

Key words

Tomato/Seedling/Photosynthetic rate/Light saturation point/Genetic algorithm/Particle swarm optimization/Regulatory model

分类

农业科技

引用本文复制引用

王东,王智永,裴雪,辛萍萍,张佐经..基于遗传粒子群算法的番茄幼苗光合优化调控模型[J].上海农业学报,2016,32(6):26-32,7.

基金项目

国家自然科学基金资助项目(31501224);陕西省农业科技创新与攻关项目 ()

上海农业学报

OACSCDCSTPCD

1000-3924

访问量0
|
下载量0
段落导航相关论文