长春大学学报(自然科学版)2016,Vol.26Issue(6):56-58,68,4.
Chebyshev多项式及其插值法在函数求导中的应用
Application of Chebyshev Polynomial and Its Interpolation Method in Function Derivative
摘要
Abstract
In order to accurately make the approximation of interpolation function derivative to complex function derivative, this paper presents a new solution to complex function derivation by Lagrange interpolation based on Chebyshev polynomial and minimum zero de ̄viation. We take the zero point of Chebyshev polynomial with n+1 degree as the interpolation node to make Lagrange interpolation, and then use the derivative value of interpolation function to approximate the derivative value of primitive function. The error analysis and numerical example show that the method presented in this paper achieves a better effect in complex function derivation.关键词
Chebyshev多项式/插值/最小零偏差/函数求导Key words
Chebyshev polynomial/interpolation/minimum zero deviation/function derivation分类
数理科学引用本文复制引用
周晶,张红芹..Chebyshev多项式及其插值法在函数求导中的应用[J].长春大学学报(自然科学版),2016,26(6):56-58,68,4.基金项目
吉林农业大学科研启动基金资助项目(2015043) (2015043)