| 注册
首页|期刊导航|电测与仪表|基于群智能强化学习的电网最优碳-能复合流算法

基于群智能强化学习的电网最优碳-能复合流算法

郭乐欣 张孝顺 谭敏 余涛

电测与仪表2017,Vol.54Issue(1):1-7,7.
电测与仪表2017,Vol.54Issue(1):1-7,7.

基于群智能强化学习的电网最优碳-能复合流算法

Multi-objective optimal carbon-energy combined-flow algorithm of power grid based on swarm intelligence reinforcement learning

郭乐欣 1张孝顺 2谭敏 1余涛2

作者信息

  • 1. 华南理工大学电力学院,广州510640
  • 2. 广东省绿色能源技术重点实验室,广州510640
  • 折叠

摘要

Abstract

Considering the transmission characteristic of carbon emission flow and power flow in power grid , this paper proposes the mathematical model of optimal carbon-energy combined-flow of power grid .Furthermore , this paper a-dopts a PSO-Q(λ) learning algorithm for optimal carbon-energy combined-flow.The carbon emission loss, active power loss and voltage stability are chosen as the optimization objectives on linear weighted way .The algorithm intro-duces multi-agent particle swarm computation , converts the load sections and controllable variables to status and ac-tion, and searches for the optimal action strategy via continuous fault testing , action correction and iteration dynami-cally.Simulation in an IEEE 118-bus system indicates that the PSO-Q(λ) learning algorithm, which improves the convergence speed and maintain the abilities of seeking the global excellent result , providing a feasible and effective way to carbon-energy combined-flow on-line receding horizon optimization in a complex power grid .

关键词

Q(λ)算法/群智能/最优碳-能复合流/强化学习

Key words

Q(λ)learning/swarm intelligence/optimal carbon-energy combined-flow/reinforcement learning

分类

信息技术与安全科学

引用本文复制引用

郭乐欣,张孝顺,谭敏,余涛..基于群智能强化学习的电网最优碳-能复合流算法[J].电测与仪表,2017,54(1):1-7,7.

基金项目

基国家重点基础研究发展计划(973计划)(2013CB228205) (973计划)

国家自然科学基金项目(51177051 ()

51477055) ()

电测与仪表

OA北大核心

1001-1390

访问量0
|
下载量0
段落导航相关论文