| 注册
首页|期刊导航|计算机工程与应用|特征融合与objectness加强的显著目标检测

特征融合与objectness加强的显著目标检测

王娇娇 刘政怡 李辉

计算机工程与应用2017,Vol.53Issue(2):195-200,270,7.
计算机工程与应用2017,Vol.53Issue(2):195-200,270,7.DOI:10.3778/j.issn.1002-8331.1504-0287

特征融合与objectness加强的显著目标检测

Feature fusing and objectness enhanced approach of saliency detection

王娇娇 1刘政怡 1李辉1

作者信息

  • 1. 安徽大学 计算机科学与技术学院,合肥 230601
  • 折叠

摘要

Abstract

Saliency detection is a fundamental part of computer vision applications, and the goal is to detect important pixels or regions in an image which attracts human visual attention most. By analyzing some recent methods, a new approach is proposed to solve detection errors problems and to enhance the adaptation of features in saliency detection. It detects saliency in the perspective of both object and background and integrates multi features. It extracts color distinctness feature in the perspective of object and extracts boundary prior feature in the perspective of background, and then combines the two features to obtain the corresponding map. In order to keep accuracy, it uses objectness feature to refine the saliency of detected regions. In comparison experiments, it achieves an average precision of 92.4% on MSRA-1000 databases, and achieves higher precision on CSSD dataset and ECSSD dataset. Experimental results demonstrate the used features make up for each other, which can enhance the saliency detection accuracy.

关键词

计算机视觉/显著目标检测/边界先验/颜色区别性/objectness

Key words

computer vision/saliency detection/boundary prior/color distinctness/objectness

分类

信息技术与安全科学

引用本文复制引用

王娇娇,刘政怡,李辉..特征融合与objectness加强的显著目标检测[J].计算机工程与应用,2017,53(2):195-200,270,7.

基金项目

高等学校博士学科点专项科研基金联合资助课题(No.20133401110009);安徽高校省级自然科学研究项目(No.KJ2015A009)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文