| 注册
首页|期刊导航|东南大学学报(自然科学版)|基于深度特征的目标跟踪算法

基于深度特征的目标跟踪算法

程旭 张毅锋 刘袁 崔锦实 周琳

东南大学学报(自然科学版)2017,Vol.47Issue(1):1-5,5.
东南大学学报(自然科学版)2017,Vol.47Issue(1):1-5,5.DOI:10.3969/j.issn.1001-0505.2017.01.001

基于深度特征的目标跟踪算法

Object tracking algorithm based on deep feature

程旭 1张毅锋 2刘袁 3崔锦实 1周琳3

作者信息

  • 1. 东南大学信息科学与工程学院,南京210096
  • 2. 南京船舶雷达研究所,南京210003
  • 3. 北京大学机器感知与智能教育部重点实验室,北京 100871
  • 折叠

摘要

Abstract

To solve the robustness problem of the motion object in the tracking process,a tracking al-gorithm based on deep feature is proposed.First,each frame in the video is normalized by affine transformation.Then,the object feature is extracted from the normalized image by the stacked de-noising autoencoder.Because of the large dimensions of deep feature,to improve the computational efficiency,an effective dimension reduction method based on sparse representation is presented.The high dimensional features are projected into the low dimensional space by the projection matrix.The object tracking is achieved by combing the particle filter algorithm.Finally,the object information of the first frame is integrated into the updating process of the object appearance to reduce the risk of object drift during the tracking process.The experimental results show that the proposed tracking al-gorithm exhibits a high degree of accuracy in six video sequences,and it can stably track the object under the circumstance of occlusion,illumination change,scale variation and fast motion.

关键词

视觉跟踪/深度学习/稀疏表示/模板更新

Key words

visual tracking/deep learning/sparse representation/template updating

分类

信息技术与安全科学

引用本文复制引用

程旭,张毅锋,刘袁,崔锦实,周琳..基于深度特征的目标跟踪算法[J].东南大学学报(自然科学版),2017,47(1):1-5,5.

基金项目

国家自然科学基金资助项目(61571106)、江苏省自然科学基金资助项目(BK20151102)、北京大学机器感知与智能教育部重点实验室开放课题资助项目(K-2016-03). ()

东南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-0505

访问量0
|
下载量0
段落导航相关论文