| 注册
首页|期刊导航|四川师范大学学报(自然科学版)|Banach空间含导数项的二阶脉冲微分方程的解

Banach空间含导数项的二阶脉冲微分方程的解

尚亚亚 史静文 李永祥

四川师范大学学报(自然科学版)2017,Vol.40Issue(1):45-50,6.
四川师范大学学报(自然科学版)2017,Vol.40Issue(1):45-50,6.DOI:10.3969/j.issn.1001-8395.2017.01.007

Banach空间含导数项的二阶脉冲微分方程的解

The Solutions for Second Order Impulsive Differential Equationswith Dependence on the Derivative Terms in Banach Spaces

尚亚亚 1史静文 1李永祥1

作者信息

  • 1. 西北师范大学 数学与统计学院,甘肃 兰州 730070
  • 折叠

摘要

Abstract

In this paper,we consider the existence and uniqueness solutions for second order impulsive differential equations with dependence on the first order derivative{-u″(t)=f(t,u(t),u′(t)),t≠ tk,t∈ J=,-Δu′|t=tk=Ik(u(tk),u′(tk)),k=1,2,…,m,u(0)=θ,u(1)=θ in Banach spaces,where,f∈ C(J× E×E,E),Ik∈ C(E×E,E),k=1,2,…,m.By choosing proper working space and equivalent norm,while the nonlinear term f(t,x,y) and Ik(x,y) satisfy more general non-compactness measure conditions,we obtain the existence results of solutions and positive solutions combining with the estimation skills of the non-compactness measure and the Sadovskii fixed-point theorem.Besides,we discuss the uniqueness of the solutions of this boundary value problem.

关键词

Banach空间/非紧性测度/凝聚映射/不动点定理

Key words

Banach space/non-compactness measure/condensing mapping/fixed-point theorem

分类

数理科学

引用本文复制引用

尚亚亚,史静文,李永祥..Banach空间含导数项的二阶脉冲微分方程的解[J].四川师范大学学报(自然科学版),2017,40(1):45-50,6.

基金项目

国家自然科学基金(11261053)和甘肃省自然科学基金(1208R-JZA129) (11261053)

四川师范大学学报(自然科学版)

OA北大核心CSTPCD

1001-8395

访问量0
|
下载量0
段落导航相关论文