| 注册
首页|期刊导航|计算机工程与应用|基于Cat混沌与高斯变异的改进灰狼优化算法

基于Cat混沌与高斯变异的改进灰狼优化算法

徐辰华 李成县 喻昕 黄清宝

计算机工程与应用2017,Vol.53Issue(4):1-9,50,10.
计算机工程与应用2017,Vol.53Issue(4):1-9,50,10.DOI:10.3778/j.issn.1002-8331.1607-0244

基于Cat混沌与高斯变异的改进灰狼优化算法

Improved grey wolf optimization algorithm based on chaotic Cat mapping and Gaussian mutation

徐辰华 1李成县 1喻昕 2黄清宝1

作者信息

  • 1. 广西大学 电气工程学院,南宁 530004
  • 2. 广西大学 计算机与电子信息学院,南宁 530004
  • 折叠

摘要

Abstract

In order to overcome the defects of basic grey wolf optimization algorithm about the dependence on the initial population, the presence of premature convergence, and easily getting into local minima, this paper proposes an improved grey wolf optimization algorithm applied to solve the function optimization problem. In the proposed algorithm, firstly, chaotic Cat sequence is used to initiate individual position, which can strengthen the diversity of global searching. Secondly, the individual memory from PSO are applied to enhance the local search ability and convergence speed. Thirdly, a Gaussian disturbance based the rules of survival of the fittest will be given on the global optimum of each generation, thus the algo-rithm can effectively jump out of local minima. Experimental results based on the thirteen benchmark functions show that the proposed improved GWO algorithm is superior to the basic GWO, PSO, GA and ACO algorithm in both computational accuracy and convergence rate.

关键词

混沌cat映射/灰狼优化算法/函数优化/高斯变异/优胜劣汰选择

Key words

chaotic Cat map/grey wolf optimization algorithm/function optimization/Gaussian mutation/the rules of survival of the fittest

分类

信息技术与安全科学

引用本文复制引用

徐辰华,李成县,喻昕,黄清宝..基于Cat混沌与高斯变异的改进灰狼优化算法[J].计算机工程与应用,2017,53(4):1-9,50,10.

基金项目

国家自然科学基金(No.61364007,No.61462006) (No.61364007,No.61462006)

广西自然科学基金(No.2014GXNSFAA118391). (No.2014GXNSFAA118391)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文