计算机工程与应用2017,Vol.53Issue(4):75-78,4.DOI:10.3778/j.issn.1002-8331.1606-0026
变系数时间分数阶子扩散方程的数值解
Numerical method for time fractional sub-diffusion equation with variable coeffi-cients
摘要
Abstract
For the time fractional sub-diffusion equation with variable coefficients, a numerical method is presented, Along the time direction, this method is constructed by using the recursion formula which is obtained from the use of the Lagrange interpolation function, along the space direction, the quadratic spline interpolation functions are used as the basis functions, and the compact optimal quadratic spline collocation scheme is built. Theoretical analyses and numerical examples show that super-convergence in space can be achieved in the collocation points.关键词
二次样条插值/分数阶子扩散方程/超收敛性Key words
quadratic spline interpolation/fractional sub-diffusion equation/optimal convergence分类
数理科学引用本文复制引用
罗卫华,吴国成..变系数时间分数阶子扩散方程的数值解[J].计算机工程与应用,2017,53(4):75-78,4.基金项目
国家自然科学基金(No.11301257) (No.11301257)
四川省教育厅重点项目基金(No.15ZA0288). (No.15ZA0288)