| 注册
首页|期刊导航|计算机工程与应用|变系数时间分数阶子扩散方程的数值解

变系数时间分数阶子扩散方程的数值解

罗卫华 吴国成

计算机工程与应用2017,Vol.53Issue(4):75-78,4.
计算机工程与应用2017,Vol.53Issue(4):75-78,4.DOI:10.3778/j.issn.1002-8331.1606-0026

变系数时间分数阶子扩散方程的数值解

Numerical method for time fractional sub-diffusion equation with variable coeffi-cients

罗卫华 1吴国成1

作者信息

  • 1. 内江师范学院 数学与信息科学学院/四川省数据恢复重点实验室,四川 内江 641112
  • 折叠

摘要

Abstract

For the time fractional sub-diffusion equation with variable coefficients, a numerical method is presented, Along the time direction, this method is constructed by using the recursion formula which is obtained from the use of the Lagrange interpolation function, along the space direction, the quadratic spline interpolation functions are used as the basis functions, and the compact optimal quadratic spline collocation scheme is built. Theoretical analyses and numerical examples show that super-convergence in space can be achieved in the collocation points.

关键词

二次样条插值/分数阶子扩散方程/超收敛性

Key words

quadratic spline interpolation/fractional sub-diffusion equation/optimal convergence

分类

数理科学

引用本文复制引用

罗卫华,吴国成..变系数时间分数阶子扩散方程的数值解[J].计算机工程与应用,2017,53(4):75-78,4.

基金项目

国家自然科学基金(No.11301257) (No.11301257)

四川省教育厅重点项目基金(No.15ZA0288). (No.15ZA0288)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文