| 注册
首页|期刊导航|计算机工程与应用|加权变异策略动态差分进化算法

加权变异策略动态差分进化算法

张锦华 宋来锁 张元华 李富昌

计算机工程与应用2017,Vol.53Issue(4):156-162,7.
计算机工程与应用2017,Vol.53Issue(4):156-162,7.DOI:10.3778/j.issn.1002-8331.1506-0277

加权变异策略动态差分进化算法

Dynamic differential evolution algorithm with weighted mutation strategy

张锦华 1宋来锁 2张元华 3李富昌4

作者信息

  • 1. 昆明工业职业技术学院 电气学院,昆明 650302
  • 2. 玉溪市计算中心,云南 玉溪 653100
  • 3. 玉溪农业职业技术学院,云南 玉溪 653106
  • 4. 云南师范大学 经济与管理学院,昆明 650500
  • 折叠

摘要

Abstract

Because of the problems of Differential Evolution(DE)algorithm such as premature convergence, low accuracy and tedious parameter setting for hard high-dimensional optimization problems, a dynamic differential evolution algorithm with weighted mutation strategy, called WMDDE, is presented. Firstly, two new weighted mutation operators of random disturbance are designed by weighting combination of DE/rand/1 and DE/best/1, which is utilized to balance the global and local search dynamically, and avoid premature convergence. Secondly, a self-adaptive parameter setting strategy of adjust scaling factor and crossover factor is designed, avoiding tedious parameter setting. Finally, experimental results on 11 benchmark functions show that the new algorithm can effectively avoid premature convergence and has the global con-vergence ability strongly, and its optimization rate solution accuracy, stability are better than the other four kinds of differ-ential evolutions.

关键词

差分进化算法/维变异/扰动/早熟收敛/参数调整

Key words

differential evolution algorithm/dimensional mutation/disturbance/premature convergence/parameter setting

分类

信息技术与安全科学

引用本文复制引用

张锦华,宋来锁,张元华,李富昌..加权变异策略动态差分进化算法[J].计算机工程与应用,2017,53(4):156-162,7.

基金项目

国家自然科学基金(No.71262031). (No.71262031)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文