| 注册
首页|期刊导航|吉林大学学报(理学版)|基于正交投影方法的二次特征值反问题及其最佳逼近解

基于正交投影方法的二次特征值反问题及其最佳逼近解

周硕 白媛

吉林大学学报(理学版)2017,Vol.55Issue(1):33-37,5.
吉林大学学报(理学版)2017,Vol.55Issue(1):33-37,5.DOI:10.13413/j.cnki.jdxblxb.2017.01.06

基于正交投影方法的二次特征值反问题及其最佳逼近解

Inverse Quadratic Eigenvalue Problem and Its Optimal Approximation Solution Based on Orthogonal Projection Methods

周硕 1白媛1

作者信息

  • 1. 东北电力大学 理学院,吉林 吉林 132012
  • 折叠

摘要

Abstract

We considered the generalized centrosymmetric solution (generalized anti-centrosymmetric solution)of an inverse quadratic eigenvalue problem and its optimal approximation problem.By using the orthogonal projection methods of matrix,we gave the solution of matrix equation AX +BY+CZ=0 and its optimal approximation problem.According to the properties of generalized centrosymmetric matrices (generalized anti-centrosymmetric matrices),we derived the conditions for the problem with a generalized centrosymmetric solution (generalized anti-centrosymmetric solution)and the expression of general solution. We proved the existence and the uniqueness of solution of the optimal approximation problem,and obtained the expression of the optimal approximation solution.

关键词

二次特征值反问题/广义中心对称矩阵/最佳逼近解/正交投影方法

Key words

inverse quadratic eigenvalue problem/generalized centrosymmetric matrix/optimal approximation solution/orthogonal projection method

分类

数理科学

引用本文复制引用

周硕,白媛..基于正交投影方法的二次特征值反问题及其最佳逼近解[J].吉林大学学报(理学版),2017,55(1):33-37,5.

基金项目

国家自然科学基金(批准号:11072085)和吉林省自然科学基金(批准号:201115180). (批准号:11072085)

吉林大学学报(理学版)

OA北大核心CSCDCSTPCD

1671-5489

访问量0
|
下载量0
段落导航相关论文