| 注册
首页|期刊导航|计算机工程与应用|用平滑方法改进多关系朴素贝叶斯分类

用平滑方法改进多关系朴素贝叶斯分类

徐光美 刘宏哲 张敬尊 王金华

计算机工程与应用2017,Vol.53Issue(5):69-72,4.
计算机工程与应用2017,Vol.53Issue(5):69-72,4.DOI:10.3778/j.issn.1002-8331.1507-0161

用平滑方法改进多关系朴素贝叶斯分类

Improving multi-relational Naive Bayesian classifier using smoothing methods

徐光美 1刘宏哲 2张敬尊 1王金华1

作者信息

  • 1. 北京联合大学 信息学院,北京100101
  • 2. 北京联合大学 信息服务工程重点实验室,北京 100101
  • 折叠

摘要

Abstract

To eliminate the naive Bayesian classification of zero probability and overfitting problem, this paper discusses the various probability smoothing method, gives MRNBC-M(Multi-Relational Naive Bayesian Classifier based on M-estimation)and MRNBC-L(Multi-Relational Naive Bayesian Classifier based on Laplace-estimation). In the case of multi-relationship, the impact of M and Laplace estimation methods on the classification is analyzed. In order to further optimize the classification, the method is based on the extended mutual information criterion. Experiments on the multi-relational datasets show that MRNBC-M can effectively improve the classification performance.

关键词

多关系数据挖掘/朴素贝叶斯/参数平滑/互信息

Key words

Multi-Relational Data Mining(MRDM)/Naive Bayes/smoothing methods/mutual information

分类

信息技术与安全科学

引用本文复制引用

徐光美,刘宏哲,张敬尊,王金华..用平滑方法改进多关系朴素贝叶斯分类[J].计算机工程与应用,2017,53(5):69-72,4.

基金项目

国家自然科学基金(No.61372148,No.61202245) (No.61372148,No.61202245)

北京市"长城学者"计划项目(No.CIT&TCD20130320) (No.CIT&TCD20130320)

北京市优秀人才培养项目(No.2010D005022000011) (No.2010D005022000011)

北京联合大学自然科学项目(No.zk20201403). (No.zk20201403)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文