| 注册
首页|期刊导航|计算机与现代化|基于DA-SVM的软件缺陷预测模型

基于DA-SVM的软件缺陷预测模型

甘露 臧洌 李航

计算机与现代化Issue(2):36-39,44,5.
计算机与现代化Issue(2):36-39,44,5.DOI:10.3969/j.issn.1006-2475.2017.02.007

基于DA-SVM的软件缺陷预测模型

Software Defect Prediction Model Based on DA-SVM

甘露 1臧洌 1李航1

作者信息

  • 1. 南京航空航天大学计算机科学与技术学院,江苏 南京 210016
  • 折叠

摘要

Abstract

Feature extraction is an important step in software defect prediction technology research. However, the existing feature extraction cannot accurately obtain the nonlinear dependence relations among features, thus these methods are unable to improve the accuracy of software defect prediction model. In this paper, to solve this question we propose a software defect prediction mod-el ( Denoising Autoencoder Support Vector Machine, DA-SVM) which is based on denoising autoencoder and Support Vector Ma-chine. Firstly, the model extracts features by using denoising autoencoder, secondly uses these features as input of support vector machine, lastly, uses this model to predict bugs. Experimental results show that DA-SVM not only improves the accuracy of soft-ware defect prediction model, but also reduces the noise of history data and enhances the robustness of the software defect predic-tion model.

关键词

特征提取/软件缺陷预测/降噪自动编码器/支持向量机

Key words

feature extraction/software defect prediction/denoising autoencoder/support vector machine

分类

信息技术与安全科学

引用本文复制引用

甘露,臧洌,李航..基于DA-SVM的软件缺陷预测模型[J].计算机与现代化,2017,(2):36-39,44,5.

计算机与现代化

OACSTPCD

1006-2475

访问量0
|
下载量0
段落导航相关论文