| 注册
首页|期刊导航|机械科学与技术|不确定关节机器人模型的神经网络补偿自适应控制

不确定关节机器人模型的神经网络补偿自适应控制

钟斌

机械科学与技术2017,Vol.36Issue(3):372-377,6.
机械科学与技术2017,Vol.36Issue(3):372-377,6.DOI:10.13433/j.cnki.1003-8728.2017.0308

不确定关节机器人模型的神经网络补偿自适应控制

Adaptively Controlling Neural Network Compensation with Uncertain Joint Robot Model

钟斌1

作者信息

  • 1. 中国人民武装警察部队工程大学装备工程学院,西安710086
  • 折叠

摘要

Abstract

In order to achieve the trajectory tracking control of a joint robot,because an uncertain joint robot's structural parameters cause a dynamic model's modeling errors and interfere with the working environment and the uncertain joint robot's resonant mode,the joint robot's dynamic model was divided into nominal model and error model.The error model was compensated by the RBF neural network,thus obtaining its estimation information.The neural network's output weights were adjusted adaptively according to the Lyapunov stability theory.The joint robot's adaptive neural network controller was used to solve the problems for the uncertain joint robot's dynamic system.Besides,the controller can gradually and stably track the desired trajectory though defining the Lyapunov function,being used to control a three-joint robot's torque.All the three joints can track the desired trajectory in 4 s.Tracking errors can gradually approach 0.Simulation and experimental results show that the RBF neural network can favorably approach modeling errors caused by uncertainties.

关键词

关节机器人/不确定模型/RBF神经网络/自适应权值调整

Key words

uncertain joint robot/modeling error/RBF neural network/output weight

分类

信息技术与安全科学

引用本文复制引用

钟斌..不确定关节机器人模型的神经网络补偿自适应控制[J].机械科学与技术,2017,36(3):372-377,6.

基金项目

国家自然科学基金项目(51005246)资助 (51005246)

机械科学与技术

OA北大核心CSCDCSTPCD

1003-8728

访问量0
|
下载量0
段落导航相关论文