| 注册
首页|期刊导航|工矿自动化|一种适用于井下人脸跟踪的改进主动形状模型

一种适用于井下人脸跟踪的改进主动形状模型

张秀琴 王蓉 张英俊

工矿自动化2017,Vol.43Issue(3):53-56,4.
工矿自动化2017,Vol.43Issue(3):53-56,4.DOI:10.13272/j.issn.1671-251x.2017.03.012

一种适用于井下人脸跟踪的改进主动形状模型

An improved active shape model for underground face tracking

张秀琴 1王蓉 1张英俊2

作者信息

  • 1. 武警工程大学信息工程系,陕西西安710086
  • 2. 太原科技大学计算机科学与技术学院,山西太原030024
  • 折叠

摘要

Abstract

For low accuracy of face tracking applying active shape model(ASM) in condition of sudden change of illumination and contaminated and covered miner face in underground coal mine,an improved ASM was proposed.Firstly,mirror sample set is formed by definition of mirror image with selected special training sample set.Then,the mirror sample set is processed by logarithmic scale.Finally,related block model is used as ASM learning model for training.The experimental results show that the method can effectively improve accuracy of underground face tracking.

关键词

煤矿井下/人脸跟踪/主动形状模型

Key words

underground coal mine/face tracking/active shape model

分类

矿业与冶金

引用本文复制引用

张秀琴,王蓉,张英俊..一种适用于井下人脸跟踪的改进主动形状模型[J].工矿自动化,2017,43(3):53-56,4.

基金项目

“十二五”山西省科技重大专项资助项目(20121101001) (20121101001)

山西省科技攻关项目(20141039). (20141039)

工矿自动化

OA北大核心CSTPCD

1671-251X

访问量0
|
下载量0
段落导航相关论文