| 注册
首页|期刊导航|工矿自动化|基于机器视觉的工矿现场粉尘实时监测

基于机器视觉的工矿现场粉尘实时监测

谢鹏程 陈青山 李响

工矿自动化2017,Vol.43Issue(3):61-65,5.
工矿自动化2017,Vol.43Issue(3):61-65,5.DOI:10.13272/j.issn.1671-251x.2017.03.014

基于机器视觉的工矿现场粉尘实时监测

Real-time dust monitoring for industrial site based on machine vision

谢鹏程 1陈青山 1李响1

作者信息

  • 1. 北京信息科技大学仪器科学与光电工程学院,北京 100192
  • 折叠

摘要

Abstract

In view of problems of poor real-time performance and incomplete coverage of traditional dust monitoring methods,two kinds of design scheme of dust monitoring system based on machine vision were proposed,namely dust monitoring systems based on monocular vision and binocular vision.The dust monitoring system based on monocular vision uses frame difference method and corrosion expansion algorithm to realize rapid recognition of the dust target in the field of view.Based on monocular vision,the dust monitoring system based on binocular vision uses calibration target and three-dimensional space reconstruction to achieve dust positioning.The experimental results show that the dust monitoring system based on monocular vision can capture formation process of dust cluster,and the real-time processing rate is four frames per second;the dust monitoring system based on binocular vision can further measure the position information of dust clusters,and positioning error is less than 10%.

关键词

粉尘监测/机器视觉/单目视觉/双目视觉/三维定位

Key words

dust monitoring/machine vision/monocular vision/binocular vision/three-dimensional localization

分类

矿业与冶金

引用本文复制引用

谢鹏程,陈青山,李响..基于机器视觉的工矿现场粉尘实时监测[J].工矿自动化,2017,43(3):61-65,5.

基金项目

北京市自然科学基金项目(4154071) (4154071)

北京市组织部优秀人才项目(2014000020124G105). (2014000020124G105)

工矿自动化

OA北大核心CSTPCD

1671-251X

访问量0
|
下载量0
段落导航相关论文