| 注册
首页|期刊导航|水利水电技术|基于最优特征选择与支持向量机的钱塘江涌潮检测算法

基于最优特征选择与支持向量机的钱塘江涌潮检测算法

高鹏 王瑞荣 王培力

水利水电技术2017,Vol.48Issue(1):40-45,6.
水利水电技术2017,Vol.48Issue(1):40-45,6.DOI:10.13928/j.cnki.wrahe.2017.01.008

基于最优特征选择与支持向量机的钱塘江涌潮检测算法

Optimal feature selection and support vector machines-based algorithm for detection of tidal bore in Qiantangjing River

高鹏 1王瑞荣 1王培力1

作者信息

  • 1. 杭州电子科技大学生命信息与仪器工程学院,浙江杭州310018
  • 折叠

摘要

Abstract

By taking the design of a fully new background model algorithm as the objective,a feature template is composed by the suitable pixel features selected from the relevant feature pool with the probability densities obtained by Gaussian kernel function through counting the density estimated values among various intervals,and then both the foreground and the background can be separated through the comparison with a fixed number of the pixel eigenvalues trained by the support vector machines by taking the pixel eigenvalues at the corresponding positions in the input video-streams as the input.The result from the application of this method to the detection of the tidal bore in Qiangtangjiang River shows that all the F-measure values are over 65% with stronger robustness and the recognition rate for selecting radial basis function with support vector machine is over 90% with higher computing speed,and then it can reduce the disturbance from the fluctuation of water surface with a high accuracy,thus can provide an important tool for description of the dynamic characteristics of the river.

关键词

最优特征选择/支持向量机/背景建模/运动目标检测/涌潮检测/钱塘江

Key words

optimal feature selection/support vector machines/background modeling/moving object detection/tidal bore detection/Qiangtangjiang River

分类

计算机与自动化

引用本文复制引用

高鹏,王瑞荣,王培力..基于最优特征选择与支持向量机的钱塘江涌潮检测算法[J].水利水电技术,2017,48(1):40-45,6.

基金项目

国家自然科学基金项目(61374005) (61374005)

浙江省自然科学基金项目(LY14F030022) (LY14F030022)

水利水电技术

OA北大核心CSCDCSTPCD

1000-0860

访问量0
|
下载量0
段落导航相关论文