| 注册
首页|期刊导航|水利水电技术|基于改进向量机的岩体质量分级研究

基于改进向量机的岩体质量分级研究

何云松 薛秋池 赵其华

水利水电技术2017,Vol.48Issue(1):133-138,6.
水利水电技术2017,Vol.48Issue(1):133-138,6.DOI:10.13928/j.cnki.wrahe.2017.01.025

基于改进向量机的岩体质量分级研究

Improved support vector machine-based study on rock mass quality classification

何云松 1薛秋池 2赵其华1

作者信息

  • 1. 成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川成都610059
  • 2. 成都理工大学环境与土木工程学院,四川成都610059
  • 折叠

摘要

Abstract

Based on the engineering case of a hydropower station on Jinshajiang River,a rock mass quality classification model is established with crossing verification and grid search optimized support vector machine model,for which 7 parameters,i.e.rock uniaxial compressive strength(Rc),rock quality index(RQD),rock weathering degree,number of joint set(Jn),joint roughness coefficient(Jr),joint alteration coefficient(Ja),groundwater state,are selected as the input parameters for buildng the classification model,so as to make the quality classification for the complicated rock structures within the dam site.Through the comparison made between RMR(Rock Mass Rating)and BP neural network classification method,it is indicated that the support vector machine not only has a high nonlinear mapping capacity with a quite strong ability for recognizing the rock classification,but also has better accuracy and stability,thus can meet the relevant demand of the actual construction.

关键词

支持向量机(SVM)/岩体质量分级/BP神经网络

Key words

support vector machine(SVM)/rock mass quality classification/BP neural network

分类

计算机与自动化

引用本文复制引用

何云松,薛秋池,赵其华..基于改进向量机的岩体质量分级研究[J].水利水电技术,2017,48(1):133-138,6.

基金项目

国家自然科学基金(41272333) (41272333)

水利水电技术

OA北大核心CSCDCSTPCD

1000-0860

访问量4
|
下载量0
段落导航相关论文