| 注册
首页|期刊导航|中国机械工程|基于自组织神经网络的滚动轴承状态评估方法

基于自组织神经网络的滚动轴承状态评估方法

张全德 陈果 林桐 欧阳文理 滕春禹 王洪伟

中国机械工程2017,Vol.28Issue(5):550-558,9.
中国机械工程2017,Vol.28Issue(5):550-558,9.DOI:10.3969/j.issn.1004-132X.2017.05.008

基于自组织神经网络的滚动轴承状态评估方法

Condition Assessment for Rolling Bearings Based on SOM

张全德 1陈果 1林桐 1欧阳文理 2滕春禹 2王洪伟3

作者信息

  • 1. 南京航空航天大学民航学院,南京,210016
  • 2. 中航工业综合技术研究所基础研究室,北京,100028
  • 3. 北京航空工程技术研究中心第六研究室,北京,100076
  • 折叠

摘要

Abstract

Aiming at the problems that single feature fault diagnosis accuracy was not too high,a rolling bearing condition assessment method was proposed based on SOM herein.Firstly,the multi-dimensional features were extracted from the original vibration signals and preprocessed by PCA,a fusion model was established by training SOM network and weight vectors of competitive neuron were obtained.Secondly,the fusion index,which was the minimum Euclidean distance between every sam-ple values to the competitive neuron weighting vector,was achieved.Finally,the conditions of rolling bearings were classified by comparing the minimum Euclidean distances among the detected samples and the normal samples.The proposed method herein was applied to condition assessment of the roll-ing bearings,and the test results show that the fusion index is more sensitive and robust than that of original single feature during the stages of early faults;meanwhile,the fusion index may reflect the states of rolling bearings more accurately.

关键词

自组织神经网络/主成分分析/特征融合/最小匹配距离/滚动轴承/故障识别

Key words

self-organization mapping(SOM)/principal component analysis(PCA)/feature fu-sion/minimum matching distance/rolling bearing/fault identification

分类

航空航天

引用本文复制引用

张全德,陈果,林桐,欧阳文理,滕春禹,王洪伟..基于自组织神经网络的滚动轴承状态评估方法[J].中国机械工程,2017,28(5):550-558,9.

基金项目

国家自然科学基金资助项目(51675263) (51675263)

中国机械工程

OA北大核心CSCDCSTPCD

1004-132X

访问量0
|
下载量0
段落导航相关论文