| 注册
首页|期刊导航|中南大学学报(自然科学版)|结合运动矢量的分权快速压缩跟踪算法

结合运动矢量的分权快速压缩跟踪算法

罗会兰 张文赛 钟睿 孔繁胜

中南大学学报(自然科学版)2017,Vol.48Issue(2):395-403,9.
中南大学学报(自然科学版)2017,Vol.48Issue(2):395-403,9.DOI:10.11817/j.issn.1672-7207.2017.02.018

结合运动矢量的分权快速压缩跟踪算法

Fast compressive tracking algorithm based on motion vector and assigning weight value

罗会兰 1张文赛 1钟睿 1孔繁胜2

作者信息

  • 1. 江西理工大学 信息工程学院,江西 赣州,341000
  • 2. 浙江大学计算机科学技术学院,浙江杭州,310027
  • 折叠

摘要

Abstract

To reduce the drift phenomenon in object tracking, a candidate object location search method was proposed combining motion vector with super pixel. In order to weaken the influence of complex background and improve the tracking robustness, the features from the blocks in the tracking box were assigned different weights according to their locations. The classifier may get wrong information if it continues learning when the tracking object is largely occluded. A object detection approach was proposed to avoid the false classification in the situations of object occlusion. The experiment results show that the proposed algorithm has better performance and can track successfully and efficiently for a long time, compared with some state-of-the-art works in many complicated situations, e.g. swift movement, object deformation, complex background, occlusion and illumination variation.

关键词

目标跟踪/运动矢量/置信值/遮挡检测

Key words

object tracking/motion vector/confidence value/occlusion detection

分类

信息技术与安全科学

引用本文复制引用

罗会兰,张文赛,钟睿,孔繁胜..结合运动矢量的分权快速压缩跟踪算法[J].中南大学学报(自然科学版),2017,48(2):395-403,9.

基金项目

国家自然科学基金资助项目(61462035) (61462035)

江西省青年科学家培养项目(20153BCB23010)(Project(61462035) supported by the National Natural Science Foundation of China (20153BCB23010)

Project(20153BCB23010) supported by Young Scientist Training Project of Jiangxi Province) (20153BCB23010)

中南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1672-7207

访问量0
|
下载量0
段落导航相关论文