| 注册
首页|期刊导航|北京师范大学学报(自然科学版)|用于人脸识别的改进MKD-SRC方法

用于人脸识别的改进MKD-SRC方法

何珺 孙波

北京师范大学学报(自然科学版)2017,Vol.53Issue(1):12-18,7.
北京师范大学学报(自然科学版)2017,Vol.53Issue(1):12-18,7.DOI:10.16360/j.cnki.jbnuns.2017.01.003

用于人脸识别的改进MKD-SRC方法

Face recognition via optimized MKD-SRC method

何珺 1孙波1

作者信息

  • 1. 北京师范大学信息科学与技术学院,100875,北京
  • 折叠

摘要

Abstract

Sparse representation is a hot topic in image processing,pattern recognition and computer vision.It has been widely applied in image compressing,image de-noising and restoration,target detection,object recognition,etc.For face recognition,a multi-task SRC method based on local features,the multikeypoint descriptors based SRC (MKD-SRC),is invariantly used to image rotating,scaling and translation,but it either involves high computational complexity or is not robust enough for illumination variations.Considering those problems,we examined the theory and premise of MKD-SRC,and propose an optimized MKD-SRC method based on filtering linear subspace and maximum likelihood probability.The proposed method has been estimated on public face databases.Experimental results showed its efficiency and robustness against large block occlusion and non-uniform illumination.

关键词

人脸识别/稀疏表示分类方法/改进MKD-SRC/线性子空间/极大似然概率

Key words

face recognition/sparse representation based classification method/optimized MKD-SRC method/linear subspace/maximum likelihood probability

分类

数理科学

引用本文复制引用

何珺,孙波..用于人脸识别的改进MKD-SRC方法[J].北京师范大学学报(自然科学版),2017,53(1):12-18,7.

基金项目

国家自然科学基金资助项目(61501035) (61501035)

中央高校基本科研业务费专项资金资助项目(2014KJJCA15) (2014KJJCA15)

北京师范大学学报(自然科学版)

OA北大核心CSCDCSTPCD

0476-0301

访问量0
|
下载量0
段落导航相关论文