| 注册
首页|期刊导航|测井技术|基于PCA和KNN的碳酸盐岩沉积相测井自动识别

基于PCA和KNN的碳酸盐岩沉积相测井自动识别

李艳华 王红涛 王鸣川 廉培庆 段太忠 计秉玉

测井技术2017,Vol.41Issue(1):57-63,7.
测井技术2017,Vol.41Issue(1):57-63,7.DOI:10.16489/j.issn.1004-1338.2017.01.010

基于PCA和KNN的碳酸盐岩沉积相测井自动识别

Automatic Identification of Carbonate Sedimentary Facies Based on PCA and KNN Using Logs

李艳华 1王红涛 2王鸣川 1廉培庆 1段太忠 1计秉玉1

作者信息

  • 1. 中国石化石油勘探开发研究院,北京100083
  • 2. 中国石油天然气勘探开发公司,北京100083
  • 折叠

摘要

Abstract

In geological modeling and reserves calculation of carbonate reservoir,there is no uniform criterion for identification of sedimentary facies.The purpose of this paper is to study a set of automatic identification technology for carbonate sedimentary facies.Taking Y oilfield in the Middle East for example,principal component analysis (PCA) has first been adopted.The principal components are selected according to more than 90% cumulative variance contribution.At the same time,influence of oil on resistivity is removed by forward modeling,high frequency is cleared up by median filter and boundary is gained by mode filter.With core calibration,learning samples are established based on well logging data and sedimentary subfacies of core.Then K-nearest neighbor algorithm (KNN) is used to predict sedimentary subfacies of uncored wells.The result shows prediction accuracy of sedimentary subfacies is above 90%.By comparing other methods such as Artificial Neural Network (ANN) and Self Organizing Map (SOM),the technology is more suitable for a large number of learning samples and much classification overlap,and the prediction result is more reliable and stable.

关键词

测井评价/沉积相/碳酸盐岩/KNN算法/主成分分析/测井曲线

Key words

log evaluation/sedimentary facies/carbonate rock/KNN/PCA/logging curve

分类

天文与地球科学

引用本文复制引用

李艳华,王红涛,王鸣川,廉培庆,段太忠,计秉玉..基于PCA和KNN的碳酸盐岩沉积相测井自动识别[J].测井技术,2017,41(1):57-63,7.

基金项目

国家科技重大专项(2011ZX05031-003) (2011ZX05031-003)

科技部项目(G5800-15-ZS-KJB016) (G5800-15-ZS-KJB016)

测井技术

OACSCDCSTPCD

1004-1338

访问量0
|
下载量0
段落导航相关论文