| 注册
首页|期刊导航|计算机工程与科学|基于RPCA对高维数据子空间聚类的预测方法

基于RPCA对高维数据子空间聚类的预测方法

吕红伟 王士同

计算机工程与科学2017,Vol.39Issue(3):553-561,9.
计算机工程与科学2017,Vol.39Issue(3):553-561,9.DOI:10.3969/j.issn.1007-130X.2017.03.022

基于RPCA对高维数据子空间聚类的预测方法

A predictive subspace clustering method of high-dimensional data based on RPCA

吕红伟 1王士同1

作者信息

  • 1. 江南大学数字媒体学院,江苏无锡214122
  • 折叠

摘要

Abstract

Because the predictive subspace clustering (PSC) algorithm is not robust to the principal component analysis in the PCA model,the clustering performance is severely affected when dealing with the data with strong noise.In order to improve the robustness to noise of the PSC algorithm,we use the robust principal component analysis (RPCA) decomposition technique which is paid extensive attention in recent years to obtain the low rank structure of the data and achieve a robust extraction subspace.We integrate the RPCA model into the PSC algorithm and propose a predictive subspace clustering algorithm based on the RPCA.The proposed algorithm can detect influential observations in the RPCA model,effectively carry out variable selection and model selection,and more importantly it can improve the clustering performance of the PSC algorithm in noise environment.Experimental results on real gene expression data sets show that the improved algorithm has clustering advantages and better robustness both in the noise environment and the environment without noise in comparison with the classical algorithm PSC.

关键词

RPCA/子空间聚类/变量选择/模型选择/鲁棒性

Key words

RPCA/subspace clustering/variable selection/model selection/robustness

分类

信息技术与安全科学

引用本文复制引用

吕红伟,王士同..基于RPCA对高维数据子空间聚类的预测方法[J].计算机工程与科学,2017,39(3):553-561,9.

基金项目

国家自然科学基金(61272210) (61272210)

计算机工程与科学

OA北大核心CSCDCSTPCD

1007-130X

访问量0
|
下载量0
段落导航相关论文