| 注册
首页|期刊导航|计算机工程与科学|基于混合算法的通信用户规模预测方法研究

基于混合算法的通信用户规模预测方法研究

司秀丽 刘子琦

计算机工程与科学2017,Vol.39Issue(3):567-571,5.
计算机工程与科学2017,Vol.39Issue(3):567-571,5.DOI:10.3969/j.issn.1007-130X.2017.03.024

基于混合算法的通信用户规模预测方法研究

A communication user scale prediction method based on hybrid algorithm

司秀丽 1刘子琦1

作者信息

  • 1. 吉林农业大学信息技术学院,吉林长春130118
  • 折叠

摘要

Abstract

It is very important for the decision-making of communication operators to accurately predict the scale of communication users.However,the existing conventional prediction methods have problems such as large prediction error,low prediction rate and so on.We study the user scale prediction model based on the RBF neural network,and in order to improve the prediction performance of the RBF neural network algorithm and enhance the convergence efficiency of the prediction model,we combine the gradient descent algorithm and the genetic algorithm to optimize the parameters of the RBF neural network.Example analysis shows that the hybrid RBF neural network prediction model is better than other traditional prediction models,and it has an advantage in predicting speed.

关键词

RBF神经网络/遗传算法/梯度下降算法/用户规模预测/混合算法

Key words

RBF neural network/genetic algorithm/gradient descent algorithm/user scale prediction/hybrid algorithm

分类

信息技术与安全科学

引用本文复制引用

司秀丽,刘子琦..基于混合算法的通信用户规模预测方法研究[J].计算机工程与科学,2017,39(3):567-571,5.

计算机工程与科学

OA北大核心CSCDCSTPCD

1007-130X

访问量0
|
下载量0
段落导航相关论文