宁夏大学学报(自然科学版)2017,Vol.38Issue(1):5-8,14,5.
一类带有p-Laplacian算子的分数阶微分方程反周期边值问题解的存在性
Existence of Solutions for Anti-periodic Boundary Value Problem of Fractional Differential Equations with p-Laplacian Operator
摘要
Abstract
The existence of solutions for the following anti-periodic boundary value problem of fractional differential equations with p-Laplacian operator is concerned.φp(CDa0u(f))=f(t,u(t)),t∈[0,T],u(0)=-u(T),u'(0)=-u'(T)where1<α≤2,T> 0,φp(s) =|s|p-1s,p> 1,(φp)-1 =φq,p-1 +q-1 =1.CD a0+ is Caputo fractional derivative and f:[0,T] × R → R is continuous function.By using the fractional differential equation and anti-periodic boundary value condition,the Green's function of the boundary value problem is given,and some new results on the existence of solutions of the fractional boundary value problem are obtained by means of the Banach's contraction mapping principle and the Krasnosel'skiis fixed point theorem.As an application,two examples are presented to illustrate the main results.关键词
分数阶微分方程/反周期边值问题/解的存在性/p-Laplacian算子Key words
fractional differential equations/anti-periodic boundary value problem/existence of solutions/p-Laplacian operator分类
数理科学引用本文复制引用
贠永震,苏有慧,胡卫敏..一类带有p-Laplacian算子的分数阶微分方程反周期边值问题解的存在性[J].宁夏大学学报(自然科学版),2017,38(1):5-8,14,5.基金项目
国家自然科学基金资助项目(11361047,11501560) (11361047,11501560)
江苏省自然科学基金资助项目(BK20151160) (BK20151160)
青海省自然科学基金资助项目(2012-Z-910) (2012-Z-910)
江苏省六大人才高峰项目(22013-JY-003) (22013-JY-003)
徐州工程学院重点项目(2013102) (2013102)