| 注册
首页|期刊导航|陕西师范大学学报(自然科学版)|基于二级改进LeNet-5的交通标志识别算法

基于二级改进LeNet-5的交通标志识别算法

党倩 马苗 陈昱莅

陕西师范大学学报(自然科学版)2017,Vol.45Issue(2):24-28,5.
陕西师范大学学报(自然科学版)2017,Vol.45Issue(2):24-28,5.DOI:10.15983/j.cnki.jsnu.2017.02.125

基于二级改进LeNet-5的交通标志识别算法

A traffic sign recognition algorithm based on the 2-level improved LeNet-5

党倩 1马苗 2陈昱莅1

作者信息

  • 1. 陕西师范大学 计算机科学学院, 陕西 西安 710119
  • 2. 现代教学技术教育部重点实验室, 陕西 西安 710062
  • 折叠

摘要

Abstract

Focusing on GTSRB dataset acquired in real world, a traffic sign recognition algorithm based on the 2-level improved LeNet-5 is proposed,which combines convolutional neural networks with support vector machines.With the consideration of the requirement of real-time recognition, the traditional network structure of LeNet-5 is improved first.After GTSRB dataset images were cropped and converted to grayscale images, their brightness and size are normalized to 32×32 images.Next, a 2-level improved LeNet-5 is trained with GTSRB dataset, where the first level categorized traffic signs to 6 categories with the improved LeNet-5, and the second level improved LeNet-5 provide with the final category.Experimental results show that the proposed algorithm could provide with a correct recognition ratio 91.76%, since the multi-scale features could be fully analyzed with 2-level improved LeNet-5.

关键词

卷积神经网络/交通标志/分类识别/支持向量机

Key words

convolutional neural networks/traffic signs/classification/support vector machine

分类

信息技术与安全科学

引用本文复制引用

党倩,马苗,陈昱莅..基于二级改进LeNet-5的交通标志识别算法[J].陕西师范大学学报(自然科学版),2017,45(2):24-28,5.

基金项目

国家自然科学基金(61501287,61501286) (61501287,61501286)

陕西省重点实验室开放共享项目(SAIIP201202) (SAIIP201202)

陕西省自然科学基础研究计划(2015JQ6208) (2015JQ6208)

陕西师范大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1672-4291

访问量0
|
下载量0
段落导航相关论文