| 注册
首页|期刊导航|物理学报|电学方法调控磁化翻转和磁畴壁运动的研究进展

电学方法调控磁化翻转和磁畴壁运动的研究进展

张楠 张保 杨美音 蔡凯明 盛宇 李予才 邓永城 王开友

物理学报2017,Vol.66Issue(2):1-10,10.
物理学报2017,Vol.66Issue(2):1-10,10.DOI:10.7498/aps.66.027501

电学方法调控磁化翻转和磁畴壁运动的研究进展

Progress of electrical control magnetization reversal and domain wall motion

张楠 1张保 1杨美音 1蔡凯明 1盛宇 1李予才 2邓永城 1王开友1

作者信息

  • 1. 中国科学院半导体研究所,半导体超晶格国家重点实验室,北京 100083
  • 2. 北京科技大学物理系,北京 100048
  • 折叠

摘要

Abstract

Electrical control of spins in magnetic materials and devices is one of the most important research topics in spintronics.We briefly describe the recent progress of electrical manipulations of magnetization reversal and domain wall motion.This review consists of three parts:basic concepts,magnetization manipulation by electrical current and voltage methods,and the future prospects of the field.The basic concepts,including the generation of the spin current,the interaction between the spin current and localized magnetization,and the magnetic dynamic Landau-Lifshitz-Gilbert-Slonczewski equation are introduced first.In the second part,we reviewed the progress of the magnetization controlled by electrical current and voltage.Firstly we review the electrical current control of the magnetization and domain wall motion.Three widely used structures,single-layer magnets,ferromagnet/heavy metal and ferromagnet/nonmagnetic metal/ferromagnet,are reviewed when current is used to induce magnetization reversal or drive domain wall motion.In a single-layer magnetic material structure,domain wall can be effectively driven by electrical current through spin transfer torque.The factors influencing the domain wall trapping and motion are also discussed.The electrical current control of the skyrmions has big potential applications due to much lower current density.Using the Dresselhaus and Rashba spin orbital coupling,the electrical current can also directly reverse the magnetization of single magnetic or antiferromagnetic layer.Then,we review the electrical current switching the magnetization of the ferromagnetic layer in ferromagnetic/heavy metal structures,where both spin Hall effect and Rashba effect can contribute to the current switching magnetization in such device structures.To identify the relative contributions of these two mechanisms,several quantitative studies are carried,concluding that spin Hall effect plays a major role,which is summarized in this review.Finally,we review the current switching magnetization of free layers in spin valve and magnetic tunnel junctions (MTJs) by spin transfer torque.We also discuss the approaches to the decrease of the critical current density in MTJs,which is desired for future applications.Alternatively,the electric field can also be used to manipulate the magnetization,where three methods are reviewed.Applying an electric field to the ferromagnetic/piezoelectric heterostructures,which changes the crystal structure of magnetic film through piezoelectric effects,realizes the change of the magnetic anisotropy of the ferromagnetic layer.In ferromagnetic/ferroelectric heterostructures,electric field changes the spin distribution and orbital hybridization at the surface of magnetic film through the magnet-electric coupling effects,and then controls the magnetization of the ferromagnetic layer.In ferromagnetic metal (semiconductor)/dielectric/metal structure,electric field controls the electron accumulation or depletion at the surface of the ferromagnetic metal or semiconductor,the change of the electron density in the magnetic layer in turn affects the magnetic exchange interaction and magnetic anisotropy.Finally,we present the prospects for the development of electrical control magnetization reversal and domain wall motion for future applications.

关键词

自旋电子学/自旋转移矩/自旋轨道耦合/电压调控

Key words

spintronics/spin transfer torque/spin-orbit coupling/voltage control

引用本文复制引用

张楠,张保,杨美音,蔡凯明,盛宇,李予才,邓永城,王开友..电学方法调控磁化翻转和磁畴壁运动的研究进展[J].物理学报,2017,66(2):1-10,10.

基金项目

国家重点基础研究发展计划(批准号:2014CB643903)和国家自然科学基金(批准号:61225021,11174272,11474272)资助的课题.Project supported by the National Basic Research Program of China (Grant No.2014CB643903) and the National Natural Science Foundation of China (Grant Nos.61225021,11174272,11474272). (批准号:2014CB643903)

物理学报

OA北大核心CSCDCSTPCDSCI

1000-3290

访问量0
|
下载量0
段落导航相关论文