| 注册
首页|期刊导航|厦门大学学报(自然科学版)|基于主成分分析和线性鉴别分析融合的阿尔茨海默病分类算法

基于主成分分析和线性鉴别分析融合的阿尔茨海默病分类算法

杨晨晖 余传健

厦门大学学报(自然科学版)2017,Vol.56Issue(2):226-230,5.
厦门大学学报(自然科学版)2017,Vol.56Issue(2):226-230,5.DOI:10.6043/j.issn.0438-0479.201606009

基于主成分分析和线性鉴别分析融合的阿尔茨海默病分类算法

Alzheimer′s Disease Classification Algorithm Based on Fusion Principal Component Analysis and Linear Discriminant Analysis

杨晨晖 1余传健1

作者信息

  • 1. 厦门大学信息科学与技术学院,福建厦门361005
  • 折叠

摘要

Abstract

In Alzheimer′s Disease (AD) diagnostic method,analyzing brain images has become an important means to accurate diagnosis.In this paper,we only consider brain featuresextracted from single modality brain images MRI,propose a new identification algorithm based on principal component analysis (PCA) and linear discriminant analysis (LDA) for AD classification recognition algorithm.First,it makes PCA in the original brain feature extracted from single modality brain images MRI.Second,it makes LDA in low dimensional features from PCA method,so that we obtain the combinational feature vector.Finally,we adopt nearest neighbor algorithm incombinational feature vector toclassification and recognize unknown type brain features.Experimental results have shown that,compared with the related algorithms,the proposed algorithm possesses higher classification accuracy,sensitivity and specificity.Therefore,our algorithm is effective.

关键词

阿尔茨海默病/脑图像分析/主成分分析/线性鉴别分析/最邻近算法

Key words

Alzheimer′s disease/brain image analysis/principal component analysis/linear discriminant analysis/nearest neighbor algorithm

分类

信息技术与安全科学

引用本文复制引用

杨晨晖,余传健..基于主成分分析和线性鉴别分析融合的阿尔茨海默病分类算法[J].厦门大学学报(自然科学版),2017,56(2):226-230,5.

厦门大学学报(自然科学版)

OA北大核心CSCDCSTPCD

0438-0479

访问量0
|
下载量0
段落导航相关论文