| 注册
首页|期刊导航|自动化学报|基于双层采样主动学习的社交网络虚假用户检测方法

基于双层采样主动学习的社交网络虚假用户检测方法

谭侃 高旻 李文涛 田仁丽 文俊浩 熊庆宇

自动化学报2017,Vol.43Issue(3):448-461,14.
自动化学报2017,Vol.43Issue(3):448-461,14.DOI:10.16383/j.aas.2017.c160308

基于双层采样主动学习的社交网络虚假用户检测方法

Two-layer Sampling Active Learning Algorithm for Social Spammer Detection

谭侃 1高旻 2李文涛 1田仁丽 2文俊浩 1熊庆宇3

作者信息

  • 1. 信息物理社会可信服务计算教育部重点实验室 重庆 400044 中国
  • 2. 重庆大学软件学院 重庆 400044 中国
  • 3. 悉尼科技大学工程与信息技术学院量子计算与智能系统研究中心 悉尼 NSW 2007 澳大利亚
  • 折叠

摘要

Abstract

With the rapid development of social network, more and more people join in social network to make friends and share their views. However, social network is always suffering from fake accounts due to its openness. Fake accounts, also called spammers, always spread spam information to achieve their own purpose, which have destroyed the security and reliability of social network. Existing detection methods extract behaviour, text and relationship features of users, and then use machine learning algorithms to identify social spammers. But machine learning algorithms often suffer from insufficiently labeled training data. Aiming to solve this problem, we propose an efficient algorithm, called two-layer sampling active learning, to construct an accurate classifier with minimum labeled samples. We present three criteria (uncertainty, representative and diversity) to quantity the value of unlabeled samples, using the combination of sorting and clustering to actively select samples with max uncertainty, max representative and max diversity. Experimental results on Twitter, Apontador, and Youtube datasets prove the efficiency of our approach, and better precision and recall of our approach than other active learning methods.

关键词

社交网络/虚假用户/主动学习/样本多样性

Key words

Social network/spammer/active learning/diversity of samples

引用本文复制引用

谭侃,高旻,李文涛,田仁丽,文俊浩,熊庆宇..基于双层采样主动学习的社交网络虚假用户检测方法[J].自动化学报,2017,43(3):448-461,14.

基金项目

国家重点基础研究发展计划(973计划)(2013CB328903),重庆市基础与前沿研究计划(cstc2015jcyjA40049),国家自然科学基金(71102065),国家科技支撑计划(2015BAF05B03),中央高校基础研究基金(106112014CDJZR095502)资助Supported by National Key Basic Research Program of China(973Program)(2013CB328903),Basic and advanced research projects in Chongqing(cstc2015jcyjA40049),National Natu-ral Science Foundation of China(71102065),National Science and Technology Ministry(2015BAF05B03),and Fundamental Research Funds for the Central Universities(106112014CD-JZR095502) (973计划)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文