| 注册
首页|期刊导航|计量学报|基于神经网络的超声波轻质燃油质量流量测量方法研究

基于神经网络的超声波轻质燃油质量流量测量方法研究

张晓钟 孟凡芹 宋生奎

计量学报2017,Vol.38Issue(2):205-208,4.
计量学报2017,Vol.38Issue(2):205-208,4.DOI:10.3969/j.issn.1000-1158.2017.02.18

基于神经网络的超声波轻质燃油质量流量测量方法研究

The Ultrasonic Mass Flow Measurement Method of Light FuelBased on the Artificial Neural Network Model

张晓钟 1孟凡芹 1宋生奎1

作者信息

  • 1. 空军勤务学院, 江苏 徐州 221000
  • 折叠

摘要

Abstract

The relationship between the light fuel ultrasonic velocity, its density and temperature is studied on the basis of a large amount of experimental data.The artificial neural network model is established to predict light fuel density of various batches and various manufactures, the predicting error of the density is less than 0.24%.A method of mass flow measurement by a ultrasonic flow meter has been given.With no need for the fuel standard density, the ultrasonic flow meter can measure the light liquid fuel mass measurement, the repeatability error of mass flow of a prototype proved to be less than 0.35%.

关键词

计量学/质量流量测量/超声波流量计/神经网络模型/轻质燃油

Key words

metrology/mass flow measurement/ultrasonic flow meter/neural network model/light fuel

引用本文复制引用

张晓钟,孟凡芹,宋生奎..基于神经网络的超声波轻质燃油质量流量测量方法研究[J].计量学报,2017,38(2):205-208,4.

基金项目

军队后勤科研项目 ()

计量学报

OA北大核心CSCDCSTPCD

1000-1158

访问量0
|
下载量0
段落导航相关论文