| 注册
首页|期刊导航|计算机工程与应用|分布式环境下卷积神经网络并行策略研究

分布式环境下卷积神经网络并行策略研究

张任其 李建华 范磊

计算机工程与应用2017,Vol.53Issue(8):1-7,14,8.
计算机工程与应用2017,Vol.53Issue(8):1-7,14,8.DOI:10.3778/j.issn.1002-8331.1610-0244

分布式环境下卷积神经网络并行策略研究

Research on parallel strategy of convolution neural network in distributed environment

张任其 1李建华 1范磊1

作者信息

  • 1. 上海交通大学 电子信息与电气工程学院,上海 200240
  • 折叠

摘要

Abstract

Convolutional neural networks usually use standard error back propagation algorithm to do serial training. With the growth of data size, the single machine serial training is time-consuming and takes up more system resources. In order to realize the convolution neural network training of massive data, a parallel training model of BP neural network based on MapReduce framework is proposed. The model combines the standard error back-propagation algorithm and error back-propagation algorithm and divides large data sets into several sub sets. Parallel processing is carried out in the condition of loss of a small amount of accuracy, and the MNIST data set is extended to carry out the image recognition test. Experi-mental results show that the algorithm has a good adaptability to the data size, and can improve the training efficiency of the convolution neural network.

关键词

卷积神经网络/后向传播(BP)算法/Hadoop并行策略

Key words

convolutional neural networks/Back Propagation(BP)algorithm/Hadoop parallel processing

分类

信息技术与安全科学

引用本文复制引用

张任其,李建华,范磊..分布式环境下卷积神经网络并行策略研究[J].计算机工程与应用,2017,53(8):1-7,14,8.

基金项目

上海市科委基础研究重点项目(No.13JC1403501). (No.13JC1403501)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文