| 注册
首页|期刊导航|计算机工程与应用|基于改进的稀疏重构算法的行人异常行为分析

基于改进的稀疏重构算法的行人异常行为分析

汤春明 卢永伟

计算机工程与应用2017,Vol.53Issue(8):165-169,185,6.
计算机工程与应用2017,Vol.53Issue(8):165-169,185,6.DOI:10.3778/j.issn.1002-8331.1510-0065

基于改进的稀疏重构算法的行人异常行为分析

Pedestrian abnormal behavior analysis based on optimized sparse reconstruction algorithm

汤春明 1卢永伟1

作者信息

  • 1. 天津工业大学 电子与信息工程学院,天津 300387
  • 折叠

摘要

Abstract

In order to identify abnormal behavior in the video surveillance, first of all, it tracks the pedestrian, and then analyzes the trajectory to determine whether there is abnormal behavior. In the pedestrian tracking, the Kalman filter and spatial-temporal context algorithm are combined together, which can effectively avoid the shelter problem in complicated background. In the analysis of abnormal behavior, the trajectory is classified according to the shape to get the normal trajectory scenario set. It analyzes the trajectory by optimized sparse reconstruction algorithm and distinguishes normal or abnormal according to the reconstruction residual. The experimental results show that the proposed method has higher recognition rate compared with the original method.

关键词

视频监控序列/目标跟踪/时空上下文/异常分析/稀疏重构算法

Key words

video monitoring sequence/target tracking/spatial-temporal context/abnormal analysis/sparse reconstruction algorithm

分类

信息技术与安全科学

引用本文复制引用

汤春明,卢永伟..基于改进的稀疏重构算法的行人异常行为分析[J].计算机工程与应用,2017,53(8):165-169,185,6.

基金项目

天津市第三批三年千人计划项目(No.62014511) (No.62014511)

天津工业大学引进教师科研启动项目(No.030367). (No.030367)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文