| 注册
首页|期刊导航|工矿自动化|基于改进BP神经网络的矿用通风机故障诊断

基于改进BP神经网络的矿用通风机故障诊断

孙慧影 林中鹏 黄灿 陈鹏

工矿自动化2017,Vol.43Issue(4):37-41,5.
工矿自动化2017,Vol.43Issue(4):37-41,5.DOI:10.13272/j.issn.1671-251x.2017.04.009

基于改进BP神经网络的矿用通风机故障诊断

Fault diagnosis of mine ventilator based on improved BP neural network

孙慧影 1林中鹏 1黄灿 1陈鹏2

作者信息

  • 1. 山东科技大学电气与自动化工程学院,山东青岛 266590
  • 2. 国网山东省电力公司检修公司,山东济南250000
  • 折叠

摘要

Abstract

In view of characteristics of complicated correlation of mine ventilator failure and symptom,a fault diagnosis method using BP neural network optimized by dynamic adaptation cuckoo search algorithm was proposed.The optimal initial parameters of neural network are solved by using global search ability of dynamic adaptation cuckoo search algorithm.Then,the BP neural network is trained to obtain the final fault diagnosis model.The example analysis results show that the method can effectively achieve fault diagnosis of mine ventilator and has the characteristics of fast convergence and high precision,and the diagnosis accuracy of the test sample is 92.5 %.

关键词

矿用通风机/故障诊断/动态适应布谷鸟搜索算法/BP神经网络

Key words

mine ventilator/fault diagnosis/dynamic adaptation cuckoo search algorithm/BP neural network

分类

矿业与冶金

引用本文复制引用

孙慧影,林中鹏,黄灿,陈鹏..基于改进BP神经网络的矿用通风机故障诊断[J].工矿自动化,2017,43(4):37-41,5.

基金项目

国家自然科学基金项目(61304080). (61304080)

工矿自动化

OA北大核心CSTPCD

1671-251X

访问量0
|
下载量0
段落导航相关论文