三峡大学学报(自然科学版)2017,Vol.39Issue(2):10-13,4.DOI:10.13393/j.cnki.issn.1672-948X.2017.02.003
基于人工蜂群算法的大坝变形支持向量机预测模型
Dam Deformation Support Vector Machine Prediction Model Based on Artificial Bee Colony Algorithm
摘要
Abstract
In order to solve the problem of support vector machine (SVM) parameter optimization method which is easy to fall into local optimal solution in dam deformation prediction,based on the strong global optimization ability and the strong robustness of the artificial bce colony (ABC) algorithm,a method of applying the artificial bee colony (ABC) algorithm to the optimization of SVM parameters is proposed.The penalty factor C and kernel function σ are regarded as the honey source in the ABC algorithm for optimization.The results show that the dam deformation prediction model based on ABC-SVM can overcome the local optimal solution;and the fitting and prediction accuracy of the model can be promoted.关键词
大坝变形/预测模型/蜂群(ABC)算法/支持向量机(SVM)Key words
dam deformation/prediction model/artificial bee colony (ABC) algorithm/support vector machine (SVM)分类
建筑与水利引用本文复制引用
董明,陈慧艳,伏晓,朱世贤..基于人工蜂群算法的大坝变形支持向量机预测模型[J].三峡大学学报(自然科学版),2017,39(2):10-13,4.基金项目
国家自然科学基金重点项目(51139001,41323001) (51139001,41323001)
国家自然科学基金面上项目(51479054,51579086,51379068,51579083) (51479054,51579086,51379068,51579083)
江苏省杰出青年基金项目(BK20140039) (BK20140039)
国家自然科学基金项目(51279052,51579085) (51279052,51579085)
高等学校博士学科点专项科研基金(20130094110010) (20130094110010)
江苏高校优势学科建设工程资助项目(水利工程)(YS11001) (水利工程)
国家重点实验室专项基金(20145027612) (20145027612)
江苏省“六大人才高峰”项目(JY-008,JY-003) (JY-008,JY-003)
中央高校基本科研业务费项目(2015B20714) (2015B20714)
国家重点研发计划课题(2016YFC0401601). (2016YFC0401601)