| 注册
首页|期刊导航|应用数学|缺失数据下双重广义线性模型的经验似然推断

缺失数据下双重广义线性模型的经验似然推断

吴刘仓 王子豪 詹金龙

应用数学2016,Vol.29Issue(2):252-257,6.
应用数学2016,Vol.29Issue(2):252-257,6.

缺失数据下双重广义线性模型的经验似然推断

Empirical Likelihood for Double Generalized Linear Models with Missing Data

吴刘仓 1王子豪 1詹金龙1

作者信息

  • 1. 昆明理工大学理学院,云南昆明650093
  • 折叠

摘要

Abstract

Based on profiled empirical likelihood method,the double generalized linear models' quasi-likelihood functions were considered as the constraints of the profile empirical likelihood ratio function with missing responses.The confidence intervals of unknown parameters in double generalized linear models were constructed.Simulation studies show that,in the double generalized linear models,the inverse probability weighted method and empirical likelihood method are more useful and effective than the unweighted method and normal approximation method respectively.

关键词

缺失数据/双重广义线性模型/经验似然/置信区间

Key words

Missing Data/Double generalized linear model/Empirical likelihood/Confidence interval

分类

数理科学

引用本文复制引用

吴刘仓,王子豪,詹金龙..缺失数据下双重广义线性模型的经验似然推断[J].应用数学,2016,29(2):252-257,6.

基金项目

国家自然科学基金项目(11261025) (11261025)

国家自然科学基金项目(11126309) (11126309)

云南省自然科学基金项目(2011FZ044) (2011FZ044)

应用数学

OA北大核心CSCDCSTPCD

1001-9847

访问量0
|
下载量0
段落导航相关论文