纺织高校基础科学学报2017,Vol.30Issue(1):74-80,7.DOI:10.13338/j.issn.1006-8341.2017.01.013
具有奇异M-矩阵结构的非线性特征值问题的正特征向量及其牛顿迭代解
Positive eigenvector of nonlinear eigenvalue problems with singular M-matrix and Newton iterative solution
摘要
Abstract
Some sufficient conditions are proposed such that nonlinear eigenvalue problem with irreducible singular M-matrix has a unique positive eigenvector.Studies show that any positive number is the eigenvalue of nonlinear eigenvalue problems and the positive eigenvector corresponding to the eigenvalue is unique.Meanwhile,the Newton iterative method is constructed for numerically solving such a positive eigenvector,and some convergence result on this iterarive method are established.Finally,a numerical example is presented to show that the algorithm is effective.关键词
奇异M-矩阵/非线性特征值问题/正特征向量/牛顿迭代法/收敛性Key words
singular M-matrix/nonlinear eigenvalue problem/positive eigenvector/Newton iterative solution/convergence分类
数理科学引用本文复制引用
张成毅,宋耀艳,薛子臣..具有奇异M-矩阵结构的非线性特征值问题的正特征向量及其牛顿迭代解[J].纺织高校基础科学学报,2017,30(1):74-80,7.基金项目
国家自然科学基金资助项目(11201362) (11201362)
陕西省自然科学基金资助项目(2016JMl009) (2016JMl009)