| 注册
首页|期刊导航|纺织高校基础科学学报|基于非下采样轮廓波变换和朴素贝叶斯分类器的织物缺陷检测

基于非下采样轮廓波变换和朴素贝叶斯分类器的织物缺陷检测

郝磐霞 景军锋 张蕾 张宏伟 王晓华

纺织高校基础科学学报2017,Vol.30Issue(1):134-141,147,9.
纺织高校基础科学学报2017,Vol.30Issue(1):134-141,147,9.DOI:10.13338/j.issn.1006-8341.2017.01.023

基于非下采样轮廓波变换和朴素贝叶斯分类器的织物缺陷检测

Fabric defect detection based on NSCT and naive Bayes classifier

郝磐霞 1景军锋 1张蕾 1张宏伟 1王晓华1

作者信息

  • 1. 西安工程大学电子信息学院,陕西西安710048
  • 折叠

摘要

Abstract

In order to detect fabric defects that generated during the production process,the algorithm which combines Naive Bayesian classifier (NBC) and nonsubsampled Contourlet transform (NSCT) is presented.The proposed approach is divided into two phases:the learning phase and detection phase.In the learning phase,sub-blocks of defects and defect-free fabric are extracted,respectively.Firstly,NSCT is used to filter and denoise the image.Then,the mixture of the generalized Gaussian distribution (MoGG) model of each sub-block is extracted,and the Kullback-Leibler divergence (KLD) between the sub-blocks is calculated.Finally,NBC is trained by the obtained data.In the detection phase,the detected image is divided into subblocks.The trained NBC is used to detect the sub-blocks,and the defect detection results are output.Experiment results show that the algorithm of the defect detection has a good effect for the uniform gray and color textured fabric and can detect many kinds of fabric defects.The detection accuracy can reach 97% which can meet demand of industrial production.

关键词

非下采样轮廓波变换/朴素贝叶斯分类器/广义高斯分布的混合模型

Key words

NSCT/naive Bayesian classifier/mixture of the generalized Gaussian distribution(MoGG) model

分类

信息技术与安全科学

引用本文复制引用

郝磐霞,景军锋,张蕾,张宏伟,王晓华..基于非下采样轮廓波变换和朴素贝叶斯分类器的织物缺陷检测[J].纺织高校基础科学学报,2017,30(1):134-141,147,9.

基金项目

国家自然科学基金资助项目(61301276) (61301276)

陕西省工业科技攻关项目(2015GY034) (2015GY034)

陕西省科技厅自然基金资助项目(2014JQ-5029) (2014JQ-5029)

纺织高校基础科学学报

OACSTPCD

1006-8341

访问量0
|
下载量0
段落导航相关论文