| 注册
首页|期刊导航|华东理工大学学报(自然科学版)|基于CBR和SVR的生化需氧量预测模型

基于CBR和SVR的生化需氧量预测模型

严爱军 倪鹏飞 于远航 王普

华东理工大学学报(自然科学版)2017,Vol.43Issue(2):227-233,7.
华东理工大学学报(自然科学版)2017,Vol.43Issue(2):227-233,7.DOI:10.14135/j.cnki.1006-3080.2017.02.012

基于CBR和SVR的生化需氧量预测模型

Prediction Model for Biochemical Oxygen Demand Based on CBR and SVR

严爱军 1倪鹏飞 2于远航 3王普1

作者信息

  • 1. 北京工业大学信息学部自动化学院,北京100124
  • 2. 计算智能与智能系统北京市重点实验室,北京100124
  • 3. 数字社区教育部工程研究中心,北京100124
  • 折叠

摘要

Abstract

For the problem of monitoring biochemical oxygen demand (BOD) concentration in wastewater treatment process,a case-based reasoning (CBR) prediction model based on support vector regression machine (SVR) is established in this paper.This model is composed of a case retrieval,a case reuse,a SVR revision and a case retention.The SVR revision model is obtained using the SVR training to revise the BOD concentration suggested from the traditional CBR model.The experiment results indicate that the fitting error of this model is lower compared with the support vector machine (SVM),the BP neural network,RBF neural network and the traditional CBR method.The application of SVR can effectively improve the regression performance and the learning ability for a traditional CBR model.

关键词

生化需氧量/支持向量回归机/案例推理/案例修正

Key words

biochemical oxygen demand/support vector regression/case-based reasoning/case revision

分类

信息技术与安全科学

引用本文复制引用

严爱军,倪鹏飞,于远航,王普..基于CBR和SVR的生化需氧量预测模型[J].华东理工大学学报(自然科学版),2017,43(2):227-233,7.

基金项目

国家自然科学基金(61374143) (61374143)

北京市自然科学基金(4152010) (4152010)

华东理工大学学报(自然科学版)

OA北大核心CHSSCDCSCDCSTPCD

1006-3080

访问量0
|
下载量0
段落导航相关论文