| 注册
首页|期刊导航|火力与指挥控制|多目标环境中的自适应学习恒虚警率检测算法

多目标环境中的自适应学习恒虚警率检测算法

罗朝义 程嗣怡 王玉冰

火力与指挥控制2017,Vol.42Issue(1):49-53,5.
火力与指挥控制2017,Vol.42Issue(1):49-53,5.

多目标环境中的自适应学习恒虚警率检测算法

A Adaptive Learning Constant False Alarm Rate Detection Algorithm in Multiple-target Interference Process

罗朝义 1程嗣怡 1王玉冰1

作者信息

  • 1. 空军工程大学航空航天工程学院,西安 710038
  • 折叠

摘要

Abstract

For multi-target interference reference unit in the process of target detection unit,a adaptive learning CFAR algorithm is presented.The algorithm is based on the history of the selected reference samples respectively weighted recursive estimate clutter power level.Simulation results show that weighted recursive filter in eliminating interference and target detection in clutter edge showed good performance,WRF-CFAR is more desirable in the fight against clutter edge.The overall performance by the improved CWRF-CFAR is better than WRF-CFAR and with the increase of the length of filtering the lead in the homogeneous clutter background.

关键词

多目标干扰/自适应学习/恒虚警检测/加权递推滤波/杂波边缘

Key words

multi-target interference/adaptive learning/constant false alarm rate detection/weighed recursive filter/clutter edge

分类

信息技术与安全科学

引用本文复制引用

罗朝义,程嗣怡,王玉冰..多目标环境中的自适应学习恒虚警率检测算法[J].火力与指挥控制,2017,42(1):49-53,5.

基金项目

陕西省自然科学基金资助项目(2012Q8019) (2012Q8019)

火力与指挥控制

OA北大核心CSCDCSTPCD

1002-0640

访问量2
|
下载量0
段落导航相关论文