| 注册
首页|期刊导航|计算机工程与应用|业务流程的时延预测队列挖掘方法

业务流程的时延预测队列挖掘方法

曹芮浩 方贤文 王晓悦 刘祥伟

计算机工程与应用2017,Vol.53Issue(9):226-230,270,6.
计算机工程与应用2017,Vol.53Issue(9):226-230,270,6.DOI:10.3778/j.issn.1002-8331.1512-0140

业务流程的时延预测队列挖掘方法

Delay prediction of queue mining method for business pro-cess

曹芮浩 1方贤文 1王晓悦 1刘祥伟2

作者信息

  • 1. 安徽理工大学 信息科学系,安徽 淮南 232001
  • 2. 安徽理工大学 经管学院,安徽 淮南 232001
  • 折叠

摘要

Abstract

Process mining is to analyze the log of the process information system, and to restore the real process of the business process. At present, the existing methods are based on the control flow and data flow, work for business process mining without time delay of activities and mining the process execution state. However, there are some limitations in the existing methods for the development of the time delay of multi tasks. This paper proposes a method for optimizing the process model based on queue mining. Firstly, it uses the existing process mining method, and finds the initial model of the business process. Then, by using the view of queue mining, it predicts the time delay of a target-customer to generalize the customer's behavior information which is used to optimize the initial process model. Finally, the effectiveness of the proposed method is verified by an example. The optimized process model not only has a good replay on the event log, but also can reflect the behavior information of the task in the business process with time delay.

关键词

队列挖掘/时延预测/服务日志/过程挖掘/行为轮廓

Key words

queue mining/delay prediction/service log/process mining/behavioral profile

分类

信息技术与安全科学

引用本文复制引用

曹芮浩,方贤文,王晓悦,刘祥伟..业务流程的时延预测队列挖掘方法[J].计算机工程与应用,2017,53(9):226-230,270,6.

基金项目

国家自然科学基金(No.61572035,No.61272153,No.61402011) (No.61572035,No.61272153,No.61402011)

安徽省自然科学基金(No.1508085MF111) (No.1508085MF111)

安徽省高校自然科学基金重点项目(No.KJ2014A067). (No.KJ2014A067)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文