| 注册
首页|期刊导航|计算机与数字工程|基于用户的优化协同过滤推荐算法

基于用户的优化协同过滤推荐算法

卫泽 周登文

计算机与数字工程2017,Vol.45Issue(4):613-615,628,4.
计算机与数字工程2017,Vol.45Issue(4):613-615,628,4.DOI:10.3969/j.issn.1672-9722.2017.04.003

基于用户的优化协同过滤推荐算法

Collaborative Filtering Recommendation Optimization Based on User

卫泽 1周登文1

作者信息

  • 1. 华北电力大学控制与计算机工程学院 北京 102206
  • 折叠

摘要

Abstract

In order to improve accuracy of the traditional collaborative filtering algorithm select user neighbor set, this paper proposes an improved collaborative filtering recommendation algorithm.The algorithm selects the user common rating data to calculate the user's similarity, also considers the consistency of the score data, constructes evaluation matrix, and alleviates the similarity calculation value and actual value deviation by user rating consistent times thanratingitem number as a penalty function is introduced into the similarity calculation.Experimental results show that the improved algorithm proposed in this paper significantly increases the prediction accuracy, so as to improve the quality of recommendation.

关键词

邻居集/协同过滤/一致矩阵/相似度

Key words

neighbor set/collaborative filtering/consistent matrix/similarity

分类

信息技术与安全科学

引用本文复制引用

卫泽,周登文..基于用户的优化协同过滤推荐算法[J].计算机与数字工程,2017,45(4):613-615,628,4.

基金项目

国家自然科学基金项目(编号:61372184) (编号:61372184)

北京市自然科学基金项目(编号:4162056)资助. (编号:4162056)

计算机与数字工程

OACSTPCD

1672-9722

访问量3
|
下载量0
段落导航相关论文