| 注册
首页|期刊导航|计算机应用与软件|一种基于改进混合高斯模型的前景检测

一种基于改进混合高斯模型的前景检测

罗向荣 李其申

计算机应用与软件2017,Vol.34Issue(4):238-242,5.
计算机应用与软件2017,Vol.34Issue(4):238-242,5.DOI:10.3969/j.issn.1000-386x.2017.04.040

一种基于改进混合高斯模型的前景检测

A FOREGROUD DETECTION BASED ON IMPROVED GAUSSIAN MIXTURE MODEL

罗向荣 1李其申1

作者信息

  • 1. 南昌航空大学信息工程学院 江西 南昌 330000
  • 折叠

摘要

Abstract

A new algorithm (TGM) for foreground detection is proposed based on improved Gaussian Mixture Model to solve the problem of huge computation of classic Gaussian Mixture Model (GGM).The quantity of Gaussian distribution of the pixels in background stability region is decreased and the computation is reduced based on the Model clean-up mechanism of historical information.Besides, the temporary Gaussian distribution is built and the easier modified operation is utilized to further reduce computation.At the last, the temporary Gaussian models which match the conditions are turned into official Gaussian models to avoid updating models meaninglessly and improve veracity.Experimental results show that the improved algorithm is feasible with better instantaneity and veracity.

关键词

前景目标检测/混合高斯模型/模型清理机制/临时高斯分布

Key words

Foreground detection/Gaussian Mixture Model/Model clean-up mechanism/Temporary Gaussian distribution

分类

信息技术与安全科学

引用本文复制引用

罗向荣,李其申..一种基于改进混合高斯模型的前景检测[J].计算机应用与软件,2017,34(4):238-242,5.

基金项目

江西省自然科学基金项目(YC2014-S394). (YC2014-S394)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文