| 注册
首页|期刊导航|计算机应用与软件|融合用户评分和属性相似度的协同过滤推荐算法

融合用户评分和属性相似度的协同过滤推荐算法

王三虎 王丰锦

计算机应用与软件2017,Vol.34Issue(4):305-308,321,5.
计算机应用与软件2017,Vol.34Issue(4):305-308,321,5.DOI:10.3969/j.issn.1000-386x.2017.04.052

融合用户评分和属性相似度的协同过滤推荐算法

A COLLABORATIVE FILTERING RECOMMENDATION ALGORITHM BASED ON USER SCORE AND ATTRIBUTE SIMILARITY

王三虎 1王丰锦2

作者信息

  • 1. 吕梁学院计算机科学与技术系 山西 吕梁 033000
  • 2. 同方股份有限公司 北京 100083
  • 折叠

摘要

Abstract

In order to improve the recommendation efficiency and accuracy of collaborative filtering recommendation system, and to provide personalized recommendation service, a recommendation algorithm based on user score and attribute similarity is proposed.Firstly, the current status of collaborative filtering recommendation research is analyzed, and the similarity, similarity of interest tendency, confidence and other indicators are used as the scoring criteria, which makes the calculation of user similarity more accurate and discriminative.Then the similarity between users is measured according to the attributes of the users.The comparison is made between the MovieLens data set and the Book-Crossing data set, and the accuracy, versatility and performance under different sparsity and cold start conditions are compared.Experimental results show that the proposed algorithm not only improves the recommendation accuracy, but also is superior to other collaborative filtering recommendation algorithms, and has higher practical application value.

关键词

推荐系统/协同过滤/相似性度量/稀疏性问题

Key words

Recommendation system/Collaborative filtering/Similarity measurement/Sparsity problem

分类

信息技术与安全科学

引用本文复制引用

王三虎,王丰锦..融合用户评分和属性相似度的协同过滤推荐算法[J].计算机应用与软件,2017,34(4):305-308,321,5.

基金项目

山西省教育厅教学改革项目(J2014120,J2015121). (J2014120,J2015121)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文