| 注册
首页|期刊导航|水利水电技术|基于人工蜂群算法与Elman神经网络的大坝变形监控模型

基于人工蜂群算法与Elman神经网络的大坝变形监控模型

李鹏鹏 苏怀智 郭芝韵 钱秋培

水利水电技术2017,Vol.48Issue(3):104-108,5.
水利水电技术2017,Vol.48Issue(3):104-108,5.DOI:10.13928/j.cnki.wrahe.2017.03.019

基于人工蜂群算法与Elman神经网络的大坝变形监控模型

Artificial bee colony algorithm and Elman neural network-based model for dam deformation monitoring

李鹏鹏 1苏怀智 2郭芝韵 1钱秋培2

作者信息

  • 1. 河海大学水文水资源与水利工程科学国家重点实验室,江苏南京210098
  • 2. 河海大学水利水电学院,江苏南京210098
  • 折叠

摘要

Abstract

Aiming at the problems from the Elman neural network,such as slow convergence rate,prone to fall into local minimum,etc.,an artificial bee colony algorithm and Elman neural network combined dam deformation monitoring model is established.The result from the application of it to a gravity dam shows that both the relative error and the standard error of the deformation prediction from the only Elman neural network modeling are 3.50% and 0.131resepctively,while both the relative error and the standard error of the deformation prediction from ABC-Elman (artificial bee colony algorithm and Elman neural network) model are 1.98% and 0.063 respectively.From the aspects of the contributions from all the factors of impacts on dam deformation,the component of water pressure is 27.9%,the component of temperature is 62.3% and the component of time-effectiveness is 9.8%.Generally,the ABC-Elman model has a certain advantage in the aspects of modeling efficiency and prediction accuracy,thus is not only suitable for modeling analysis on dam deformation,but also can be popularized to the models for monitoring seepage,stresses,etc.

关键词

大坝变形/监控模型/Elman神经网络/人工蜂群算法/金沙江水电基地/云南省昭通市水富县/大坝安全

Key words

dam deformation/monitoring model/Elman neural network/artificial bee colony algorithm/Jinsha River hydropower base/Yunnan Shuifu County/dam safety

分类

水利科学

引用本文复制引用

李鹏鹏,苏怀智,郭芝韵,钱秋培..基于人工蜂群算法与Elman神经网络的大坝变形监控模型[J].水利水电技术,2017,48(3):104-108,5.

基金项目

国家自然科学基金(51579083,51479054,41323001) (51579083,51479054,41323001)

水利水电技术

OA北大核心CSCDCSTPCD

1000-0860

访问量0
|
下载量0
段落导航相关论文