渭南师范学院学报2017,Vol.32Issue(8):33-41,9.
关于不定方程x2+4n=y15(n=1,2,3)的整数解
The Solution on Diophantine Equation x2+4n=y15(n=1,2,3)
摘要
Abstract
The integer solution of Diophantine equation is an important problem of the number theory,the problem of integer solution to the Diophantine equation x2+4n=y15(x,y∈Z) is discussed by using the methods of algebraic number theory and congruence theory,and the Diophantine equation x2+4n=y15(n=1,2,3)which has no integer solution is proved.关键词
不定方程/整数解/代数数论Key words
diophantine equation/integer solution/algebraic number theory分类
数理科学引用本文复制引用
尚旭,王泽灯..关于不定方程x2+4n=y15(n=1,2,3)的整数解[J].渭南师范学院学报,2017,32(8):33-41,9.基金项目
国家自然科学基金项目:神经网络的代数构造和可算性(11171137) (11171137)