| 注册
首页|期刊导航|西南交通大学学报|基于自适应聚概率矩阵的JPDA算法研究

基于自适应聚概率矩阵的JPDA算法研究

李首庆 徐洋

西南交通大学学报2017,Vol.52Issue(2):340-347,8.
西南交通大学学报2017,Vol.52Issue(2):340-347,8.DOI:10.3969/j.issn.0258-2724.2017.02.018

基于自适应聚概率矩阵的JPDA算法研究

Joint Probabilistic Data Association Algorithm Based on Adaptive Cluster Probability Matrix

李首庆 1徐洋2

作者信息

  • 1. 中国民用航空飞行学院,四川广汉618307
  • 2. 空军工程大学航空航天工程学院,陕西西安710038
  • 折叠

摘要

Abstract

A novel JPDA method for data association on multi-target tracking system was presented for reducing the class of JPDA algorithm computational complexity and solving the problem of coalesce neighboring tracks.To improve the computational complexity,the joint association event probabilities were calculated with Cheap JPDA algorithm,then the cluster probability matrix was reconstructed by thresholding method to further optimize the computational complexity.Finally,the measurement prone to make wrong association were eliminated by measurement adaptive cancellation method to avoid the track coalescence problem for neighboring tracks.Theoretical analysis and simulation results showed that the proposed algorithm was able to reduce the complexity of the algorithm and improve the timeliness on the basis of preserving the tracking accuracy,and it was also capable of avoiding track coalescence with less errors when tracking the neighboring tracks and cross tracks,comparing with the standard JPDA and Scaled JPDA algorithm.

关键词

航迹合并/经验JPDA/聚概率矩阵/阈值处理

Key words

track coalescence/cheap JPDA/cluster probability matrix/thresholding method

分类

信息技术与安全科学

引用本文复制引用

李首庆,徐洋..基于自适应聚概率矩阵的JPDA算法研究[J].西南交通大学学报,2017,52(2):340-347,8.

基金项目

国家自然科学基金委员会-中国民用航空局联合研究基金资助项目(U1433126)中国民用航空飞行学院面上项目支持(J2015-1). (U1433126)

西南交通大学学报

OA北大核心CSCDCSTPCD

0258-2724

访问量0
|
下载量0
段落导航相关论文